GISM2 Summer School – Introduction

Frédéric GALLIANO & Karine DEMYK
on behalf of the organizing committee

Banyuls-sur-mer, France

July 25, 2023
Importance of the InterStellar Medium (ISM)

- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum

Contemporary open questions

- How to apply knowledge of Galactic ISM to other galaxies?
- Peculiarity of the ISM of the Milky Way?
- Concepts to bridge the gap in angular resolution b/w the Milky Way & external galaxies?
Importance of the InterStellar Medium (ISM)
Importance of the *InterStellar Medium* (ISM)

- Galaxy evolution
Scientific Motivations – Why Are We Here?

Importance of the *InterStellar Medium* (ISM)

- Galaxy evolution
- Star formation
Importance of the *InterStellar Medium* (ISM)

- Galaxy evolution
- Star formation
- Growth of chemical complexity
Scientific Motivations – Why Are We Here?

Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- \(\text{ISM} \approx \text{Milky Way} \)
- Extragalactic ISM < Intragalactic ISM
 - \(\Rightarrow \) biased point of view

Contemporary open questions:
- How to apply knowledge of Galactic ISM to other galaxies?
- Peculiarity of the ISM of the Milky Way?
- Concepts to bridge the gap in angular resolution between the Milky Way and external galaxies?
Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- ISM \simeq Milky Way
Scientific Motivations – Why Are We Here?

Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- ISM \simeq Milky Way
- Extragalactic ISM $<$ Intragalactic ISM
Importance of the InterStellar Medium (ISM)

- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum

- ISM \simeq Milky Way
- Extragalactic ISM $<$ Intragalactic ISM
 \Rightarrow biased point of view
Scientific Motivations – Why Are We Here?

Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- ISM \(\simeq\) Milky Way
- Extragalactic ISM < Intragalactic ISM
 \(\Rightarrow\) biased point of view

Contemporary open questions
Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- ISM \sim Milky Way
- Extragalactic ISM < Intragalactic ISM
⇒ biased point of view

Contemporary open questions
- How to apply knowledge of Galactic ISM to other galaxies?
Scientific Motivations – Why Are We Here?

Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- ISM ≃ Milky Way
- Extragalactic ISM < Intragalactic ISM
 ⇒ biased point of view

Contemporary open questions
- How to apply knowledge of Galactic ISM to other galaxies?
- Peculiarity of the ISM of the Milky Way?
Scientific Motivations – Why Are We Here?

Importance of the *InterStellar Medium* (ISM)
- Galaxy evolution
- Star formation
- Growth of chemical complexity

Historical conundrum
- ISM \(\simeq\) Milky Way
- Extragalactic ISM \(<\) Intragalactic ISM
\[\Rightarrow\] biased point of view

Contemporary open questions
- How to apply knowledge of Galactic ISM to other galaxies?
- Peculiarity of the ISM of the Milky Way?
- Concepts to bridge the gap in angular resolution \(b/w\) the Milky Way \& external galaxies?
Training the next generation of ISMologists

Scientific Motivations – Training Objectives

1. Acquire a holistic knowledge of the field:
 - Observations, models and simulations;
 - Elementary physical processes and how to combine them;
 - What are the open questions.

2. Acquire some technical skills.

3. Create personal links between participants & with speakers:
 - Networking & collaborations;
 - Kick-starting projects;
 - Potential job prospectives.

4. Do not forget to have fun...

F. Galliano & K. Demyk (SOC)

GISM2, Banyuls-sur-mer

July 25, 2023
Training the next generation of ISMologists

1. Acquire a holistic knowledge of the field:
 - Observations, models and simulations;
 - Elementary physical processes and how to combine them;
 - What are the open questions.

2. Acquire some technical skills.

3. Create personal links between participants & with speakers:
 - Networking & collaborations;
 - Kick-starting projects;
 - Potential job perspectives.

4. Do not forget to have fun...
Training the next generation of ISMologists

1. Acquire a holistic knowledge of the field:
 - Observations, models and simulations;
 - Elementary physical processes and how to combine them;
 - What are the open questions.

2. Acquire some technical skills.
Scientific Motivations – Training Objectives

Training the next generation of ISMologists

1. Acquire a holistic knowledge of the field:
 - Observations, models and simulations;
 - Elementary physical processes and how to combine them;
 - What are the open questions.

2. Acquire some technical skills.

3. Create personal links b/w participants & with speakers:
 - Networking & collaborations;
 - Kick-starting projects;
 - Potential job prospectives.

F. Galliano & K. Demyk (SOC)
GISM2, Banyuls-sur-mer
July 25, 2023
Training the next generation of ISMologists

1. Acquire a holistic knowledge of the field:
 - Observations, models and simulations;
 - Elementary physical processes and how to combine them;
 - What are the open questions.

2. Acquire some technical skills.

3. Create personal links b/w participants & with speakers:
 - Networking & collaborations;
 - Kick-starting projects;
 - Potential job perspectives.

4. Do not forget to have fun...
The Audience – Participant’s Current Academic Level

- **PhD student**: 75.0%
- **Master's student**: 18.8%
- **Postdoc**: 6.2%
The Audience – Scientific Interests

- Star formation: 35 participants
- The Milky Way: 13 participants
- Nearby galaxies: 46 participants
- Ionized gas: 20 participants
- Atomic gas: 16 participants
- Molecular gas: 19 participants
- Dust: 18 participants
- Cosmic rays: 5 participants
- Magnetic field: 8 participants
- MHD: 8 participants
- Observations: 31 participants
- Data analysis: 28 participants
- Modeling: 22 participants
- Simulations: 24 participants
The Audience – Coding Experience

Number of participants

- Python: 64
- C/C++: 18
- Julia: 4
- IDL: 7
- Fortran: 10
- Other: 5
Logistics – The School Program

<table>
<thead>
<tr>
<th>Time</th>
<th>7/25</th>
<th>7/26</th>
<th>7/27</th>
<th>7/28</th>
<th>W-E</th>
<th>7/31</th>
<th>8/1</th>
<th>8/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lightning</td>
<td>Lightning</td>
<td>Round table 1</td>
<td>Lecture 7</td>
<td></td>
<td>Lecture 9</td>
<td>Lecture 12</td>
<td>Round table 3</td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture 10</td>
<td>Lecture 13</td>
</tr>
<tr>
<td></td>
<td>Lecture 2</td>
<td>Lecture 4</td>
<td>Lecture 6</td>
<td>Round table 2</td>
<td></td>
<td></td>
<td></td>
<td>Hands on</td>
</tr>
<tr>
<td>16:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hands on</td>
<td>Hands on</td>
<td>Hands on</td>
<td>Hands on</td>
<td></td>
<td>Hands on</td>
<td>Hands on</td>
<td>Hands on</td>
</tr>
<tr>
<td>18:00</td>
<td>Cocktail</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td>Dinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dinner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. Galliano & K. Demyk (SOC)
GISM2, Banyuls-sur-mer
July 25, 2023
Logistics – The Organizing Committee

Present
Karine DEMYK (hands-on)
Frédéric GALLIANO (chair)
Eva NTORMOUSI (lightning)
Jérôme PETY (Slack, Zoom)
Patrice THEULÉ (kayak, diving)

Excused
Yohan DUBOIS
Annie HUGHES
Eva SCHINNERER

F. Galliano & K. Demyk (SOC)
GISM2, Banyuls-sur-mer
July 25, 2023 9/15
Logistics – The Organizing Committee

International summer school
on the ISM of galaxies
July 25 – August 2, 2023
Banyuls-sur-mer, France

Excused
Yohan DUBOIS
Annie HUGHES
Eva SCHINNERER

GISM2 Organizer

July 25, 2023 9/15
Logistics – The Organizing Committee

Present

Karine DEMYK (hands-on)
Frédéric GALLIANO (chair)
Eva NTORMOUSI (lightning)
Jérôme PETY (Slack, Zoom)
Patrice THEULÉ (kayak, diving)

International summer school on the ISM of galaxies
July 25 – August 2, 2023
Banyuls-sur-mer, France

Excused

Yohan DUBOIS
Annie HUGHES
Eva SCHINNERER

GISM2 Organizer
GISM2, Banyuls-sur-mer
July 25, 2023 9/15
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
- Eva NTORMOUSI (lightning)
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
- Eva NTORMOUSI (lightning)
- Jérôme PETY (Slack, Zoom)

International summer school on the ISM of galaxies

GISM2, Banyuls-sur-mer

July 25 – August 2, 2023

Banyuls-sur-mer, France
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
- Eva NTORMOUSI (lightning)
- Jérôme PETY (Slack, Zoom)
- Patrice THEULÉ (kayak, diving)
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
- Eva NTORMOUSI (lightning)
- Jérôme PETY (Slack, Zoom)
- Patrice THEULÉ (kayak, diving)

Excused

Yohan DUBOIS

Annie HUGHES

Eva SCHINNERER

F. Galliano & K. Demyk (SOC)
Logistics – The Organizing Committee

Present
- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
- Eva NTORMOUSI (lightning)
- Jérôme PETY (Slack, Zoom)
- Patrice THEULÉ (kayak, diving)

Excused
- Yohan DUBOIS
- Annie HUGHES

GISM2
International summer school
on the ISM of galaxies
Banyuls-sur-mer, France
July 25 – August 2, 2023
Logistics – The Organizing Committee

Present

- Karine DEMYK (hands-on)
- Frédéric GALLIANO (chair)
- Eva NTORMOUSI (lightning)
- Jérôme PETY (Slack, Zoom)
- Patrice THEULÉ (kayak, diving)

Excused

Yohan DUBOIS Annie HUGHES Eva SCHINNERER
Logistics – The Sponsors (2/2)
Logistics – The Sponsors (2/2)

Programme National de Cosmologie et Galaxies

Programme national hautes énergies

DAQISM
Goals:

- To teach you a particular set of skills related to the school science
- To create links between students and advisers
- To encourage discussions between participants that could lead to new projects and collaborations
Hands-on – Objectives

Goals:

- To teach you a particular set of skills related to the school science
- To create links between students and advisers
- To encourage discussions between participants that could lead to new projects and collaborations

- Nine projects
- Tutored by speakers, organisers and some school participants
- 4 to 8 students per project
Hands-on – Break-Out Rooms

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Numerical simulations of Shocks and Instabilities Using the RAMSES Code</td>
<td>Eva Ntormousi Pierre Lesaffre</td>
<td>Bât. A room TP1</td>
</tr>
<tr>
<td>P2</td>
<td>Cloudy Hans-On : Emission lines</td>
<td>Patrice Theulé</td>
<td>Bât. B meeting room</td>
</tr>
<tr>
<td>P3</td>
<td>Cloudy Hans-On : Absorption lines</td>
<td>Hsiao-Wen Chen</td>
<td>Bât. A room TP1</td>
</tr>
<tr>
<td>P4</td>
<td>Spectrophotometric Modelling of Galaxies and AGNs</td>
<td>Yannick Roehlly Patrice Theulé Daniel Dale</td>
<td>Bât. B meeting room</td>
</tr>
<tr>
<td>P5</td>
<td>The Spatially-Resolved Dust Properties of Nearby Galaxies</td>
<td>Frédéric Galliano Lara Pantoni</td>
<td>Bât. A room TP2</td>
</tr>
<tr>
<td>P6</td>
<td>Millimeter Rotational Lines as Powerful Diagnostics of the Physical Conditions Inside Giant Molecular Cloud - The Orion B case</td>
<td>Jérôme Pety Antoine Zakardjian</td>
<td>Bât. A room TP3</td>
</tr>
<tr>
<td>P7</td>
<td>Combining 1D Models with MULTIGRIS</td>
<td>Vianney Lebouteiller</td>
<td>Bât B. Amphi</td>
</tr>
<tr>
<td>P8</td>
<td>Star-Formation Efficiency & Timescales : Globally to 100 pc Scales</td>
<td>Brent Groves Mélanie Chevance</td>
<td>Bât. A room TP2</td>
</tr>
<tr>
<td>P9</td>
<td>Using JWST NIRCAM and MIRI Photometry to Probe the Physical State of PAHs in the ISM of Nearby Galaxies</td>
<td>Karin Sandstrom Jessica Sutter</td>
<td>Bât. A room TP3</td>
</tr>
</tbody>
</table>
Hands-on – Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>7/25</th>
<th>7/26</th>
<th>7/27</th>
<th>7/28</th>
<th>W-E</th>
<th>7/31</th>
<th>8/1</th>
<th>8/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Light-</td>
<td>Light-</td>
<td>Round</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Round</td>
</tr>
<tr>
<td>09:30</td>
<td>ning</td>
<td>ning</td>
<td>table</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>table 3</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
</tr>
<tr>
<td>13:00</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:15</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Round</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
<td>Lecture</td>
</tr>
<tr>
<td>16:15</td>
<td>Coffee</td>
<td></td>
<td></td>
<td>2</td>
<td>11</td>
<td>14</td>
<td>talks</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Hands</td>
<td>Hands</td>
<td>Hands</td>
<td>Hands</td>
<td>Hands</td>
<td>Hands</td>
<td>Hands</td>
<td>Hands</td>
</tr>
<tr>
<td>18:00</td>
<td>Cocktail</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td>Dinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dinner</td>
<td></td>
</tr>
</tbody>
</table>
Working on the projects:

- Meeting with advisors is only part of the session
- You are supposed to work by ourselves
- Find the best organisation to work: split tasks, work together...

Presentation of the work done:

- Wednesday, August 2, 2:15 - 4:15 pm
- 12 minutes in total, including questions, i.e. ≈ 10 minutes talk maximum
- The presentation may be made by several team members
- From P1 to P9
- Prepare a pdf file to send in advance