<u>PHYSICAL CONDITIONS</u> OF THE CIRCUMGALACTIC MEDIUM

The University of Chicago

Department of Astronomy & Astrophysics

Kavli Institute for Cosmological Physics

International Summer School on the ISM of Galaxies.

Hsiao-Wen Chen

GISM 2023, July 25th-August 2nd, Banyuls-sur-Mer, France

PHYSICAL CONDITIONS OF THE CIRCUMGALACTIC MEDIUM

Thermodynamics, ionization, and chemical enrichment

Hsiao-Wen Chen

The University of Chicago

Department of Astronomy & Astrophysics

Kavli Institute for Cosmological Physics

International Summer School on the ISM of Galaxies.

GISM 2023, July 25th-August 2nd, Banyuls-sur-Mer, France

OUTLINE

- 1. Background motivation
- 2. A brief review of line profile physics
- 3. Physical properties of the diffuse circumgalactic medium from emission maps
- 4. Physical properties of the diffuse circumgalactic medium from absorption spectroscopy
- 5. Connections to the ISM and star formation histories

OUTLINE

- 1. Background motivation
- 2. A brief review of line profile physics
- 3. Physical properties of the diffuse circumgalactic medium from emission maps
- 4. Physical properties of the diffuse circumgalactic medium from absorption spectroscopy
- 5. Connections to the ISM and star formation histories

REFERENCES

- Giguère & Peng Oh
- 2. "Baryon Cycles in the Biggest Galaxies" Physics Reports (2022), Megan Donahue & G Mark Voit
- 4. Science Library (2017), Hsiao-Wen Chen
- 5. Space Science Library (2017), Hsiao-Wen Chen

1. "Key Physical Processes in the Circumgalactic Medium" ARA&A (2023), Claude-André Faucher-

3. "<u>The Circumgalactic Medium</u>" ARA&A (2017), Jason Tumlinson, Molly Peeples, & Jessica Werk "Outskirts of Distant Galaxies in Absorption", Outskirts of Galaxies, Astrophysics and Space

"The Circumgalactic Medium in Massive Halos", Gas Accretion onto Galaxies, Astrophysics and

Extended HI disk . .

Adapted from Newman+2019

Line profiles

From radiative transfer, $\frac{dI_{\nu}}{ds} = -n_X \sigma_{\nu} I_{\nu} + j_{\nu}$ with op Considering a resolved line profile $\phi(\Delta \nu)$, $\tau_{\nu} = N_X \sigma_{\mu}$ What are possible line broadening mechanisms? <u>Intrinsic line width (wings)</u>: finite life time of the upper level acts like a damping term The solution takes the form of Lorentz profile $\Phi(\Delta)$ (2) <u>Doppler motion (line core)</u>: Maxwellian distribution The Doppler width is $\Delta \nu_D = b \frac{\nu_{ij}}{c} = \frac{b}{\lambda_{ii}}$ and therefore the Doppler parameter and <u>line-of-sight velocity</u> <u>dispersion</u> are related according to $b = \sqrt{2} \sigma_v$ In principle, the observed line width constrains the But turbulent motions and bulk flows are also expected to contribute to the observed line width $b = \sqrt{\frac{2kT}{m} + b_{\text{bulk}}^2}$

otical depth
$$\tau_{\nu}(s) = \int n_{\rm X} \sigma_{\nu} ds = N_{\rm X} \sigma_{\nu}$$

 $\tau_{\nu} \phi(\Delta \nu)$ and $\phi(\Delta \nu) \neq \delta(\nu - \nu_{ij})$

$$\nu) = \frac{\Gamma/4\pi^2}{(\Delta\nu)^2 + (\frac{\Gamma}{4\pi})^2} , \text{ where } \frac{\Gamma \text{ is the damping coefficient}}{\Phi(\Delta\nu)^2 + (\frac{\Gamma}{4\pi})^2} , \text{ where } \frac{\Gamma}{\Delta\nu} \left[-\left(\frac{\Delta\nu}{\Delta\nu_D}\right)^2 \right] \propto \exp\left[-\frac{mv_z^2}{2kT}\right]$$

gas temperature
$$b = \sqrt{\frac{2kT}{m}} = 1.29 \times 10^4 \sqrt{\frac{T}{A}} \text{ cm s}^{-1}$$

Lya emission

For photoionization, absorption of ionizing photons is accompanied by recombination, generating a series of recombination lines.

In the case of Ly α , the recombination emissivity j_{ν} fraction of recombinations that result in a $Ly\alpha$ photon under optically thick (thin) conditions

The observed Ly**a** surface brightness of optically-thin (highly-ionized) gas is
$$C : \text{clumping factor } C \equiv \frac{\langle n^2 \rangle}{\langle n \rangle^2}$$

$$SB_{Ly\alpha} = \frac{\eta_{\text{thin}} h \nu_{Ly\alpha}}{4\pi (1+z)^4} \alpha \left(1 + \frac{Y}{2X}\right) n_{\text{H}} N_{\text{H}} = 7.7 \times 10^{-19} \left(\frac{1+z}{3}\right)^{-4} \left(\frac{n_{\text{H}}}{0.1 \text{ cm}^{-3}}\right) \left(\frac{N_{\text{H}}}{10^{20} \text{ cm}^{-2}}\right) \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2}$$

Under photo-ionization equilibrium, $n_{\rm HI}\Gamma = n_e n_p \alpha(T)$ where $\Gamma = \frac{1}{4\pi r^2} \int_{\nu_{\rm LL}}^{\infty} \frac{L_{\nu}}{h\nu} \sigma_{\nu} d\nu$ is the photo-ionization rate, $\nu_{\rm LL}$ is

the frequency of at the Lyman edge, and σ_{ν} is the hydrogen photo-ionization cross-section.

$$\mu = \frac{h\nu_{Ly\alpha}}{4\pi} \eta n_e n_p \alpha(T)$$
, where $\eta = 0.68$ (0.41) is the

Lya emission

In the optically-thin regime, Lya emission is <u>independent</u> of the strength of the ionizing source, leading to $\langle N_{\rm HI} \rangle = 2.2 \times 10^{17} \left(\frac{1+z}{3} \right)^{-4} \left(\frac{L_{\rm LL}}{10^{30} \, {\rm erg \, s^{-1} cm^{-2} \, arcsec^{-2}}} \right)^{-1} \left(\frac{R}{100 \, {\rm kpc}} \right)^{2} \left(\frac{{\rm SB}_{\rm Ly\alpha}}{10^{-17} \, {\rm erg \, s^{-1} \, cm^{-2} \, arcsec^{-2}}} \right) \, {\rm cm^{-2}}$

In the optically-thick regime, self-shielding becomes important and $Ly\alpha$ emission scales with the strength of the ionizing source $SB_{Ly\alpha} = \frac{\Theta \eta_{\text{thick}} h \nu_{Ly\alpha}}{4\pi (1+z)^4} \frac{\Phi}{\pi} = 4.0 \times 10^{-17} \left(\frac{1+z}{3}\right)^{-4} \left(\frac{\Theta}{0.5}\right) \left(\frac{R}{100 \,\text{kpc}}\right)^{-2} \left(\frac{L_{LL}}{10^{30} \,\text{erg s}^{-1} \,\text{Hz}^{-1}}\right) \text{erg s}^{-1} \,\text{cm}^{-2} \,\text{arcsec}^{-2}$ What happens to a Lya photon after it is generated?

the resonant absorption cross section for Ly α in 10⁴ K gas is 10,000 times larger than ionizing cross section

Lya photons from 2p to 1s will be scattered (re-absorbed & re-emitted) many times. Because of random motion of particles at ~ 10 km/s, each scattered photon undergoes random walk in frequency. The photons that are scattered into the wings of the line profile will have a higher probability to escape.

Photo-ionization equilibrium implies that $j_{Ly\alpha} \propto n_{HI} \Gamma$. At the same time, neutral fraction $x_{HI} \approx \alpha n_H \left(1 + \frac{r}{2N}\right) / \Gamma$.

Lya line profile: a measure of the underlying gas kinematics

Roughly speaking Peak separation $\propto N_{\rm HI}$ while peak ratio $\propto v_{exp}$

(see Verhamme et al. 2006; Dijkstra 2017; Gronke et al. 2015)

Adapted from Yang et al. (2014)

Lya line profile: a measure of the underlying gas kinematics

What about Ha?

Roughly speaking Peak separation $\propto N_{\rm HI}$ while peak ratio $\propto v_{exp}$

(see Verhamme et al. 2006; Dijkstra 2017; Gronke et al. 2015)

Adapted from Yang et al. (2014)

Emission

- 1. Extraplanar diffuse ionized gas around nearby galaxies
- 2. Line-emitting nebulae in galaxy groups and quasar host halos
- 3. Lyα nebulae around distant star-forming galaxies/quasars
- 4. Turbulence in the CGM

Extraplanar Diffuse Ionized Gas (eDIG)

disk-halo interfaces with structural, kinematic, and chemical clues about the feedback and accretion processes

A velocity-integrated H α map of the Milky Way (WHAM-SS; PI: L. M. Haffner)

Reynolds et al. (1973); Reynolds (1991); Lehnert & Heckman (1995); Rossa & Dettmar (2003)

Physical properties:

- $T \sim (0.6-1.5) \times 10^4 \text{ K}$
- $< n_e > ~ 0.03 0.08 \text{ cm}^{-3}$
- H+/H~1
- $f_V \sim 0.2-0.4$ within $|z| \sim 2-3$ kpc
- eDIG tends toward systemic velocity ($\Delta v = -50$ km/s in projection)
- Large scale height, $h_z \sim 1$ kpc, compared to what can be supported by thermal pressure, $h_z \sim 0.3$ kpc
- Elevated line ratios, e.g., [NII]/Ha, [SII]/Ha,

Extraplanar Diffuse Ionized Gas (eDIG)

Under hydrostatic equilibrium

$$\frac{\partial P(z,R)}{\partial z} = -\rho(z,R)\frac{\partial \Phi}{\partial z} \text{ and } P \text{ can have}$$

contributions from P_{gas} , P_B , and/or P_{cr}

 $P_{\rm gas}$ and ρ are related according to $P_{\rm gas}(z,R) = \sigma^2(z)\,\rho(z,R),$

velocity dispersion, $\sigma^2 = \sigma_{\rm th}^2 + \sigma_{\rm turb}^2$, constrained using optical emission lines

 $I_{\rm A}$ (10⁻¹⁶ erg kpc⁻¹) cm⁻² dyn (10^{-12}) P/dz| 0.5

 2 arcsec⁻²Å⁻¹)

cm⁻

 S^{-1}

See Beck 2015 and Boettcher et al. (2016) for discussions on the contributions from magnetic field and cosmic rays

Mapping Cool Intragroup Gas in Emission

(e.g., Bergeron & Boisse 1991; Lane+1998; Rao & Turnshek 2000; Chen & Lanzetta 2003; Kacprzak+2010; Kanekar+2014; Guber+2018; Peroux+2019)

A previously known damped Lya absorber of $N(\text{HI}) = 5 \times 10^{21} \text{ cm}^{-2}$ and $[\text{M/H}] = -0.8 \pm 0.1 \text{ at} \underline{z=0.313}$

Mapping Cool Intragroup Gas in Emission

New MUSE observations confirm the presence of a galaxy group at z = 0.313 with σ_v = 128 km/s, M_h ~ 3 x 10¹² M_☉

But also reveal wide-spread gaseous streams, connecting between group members

Chen et al. (2019)

Chen et al. (2019)

Mapping Gas Flows in Halos around Star-forming Galaxies in the Early Epoch

A low-mass ($M_{\rm star} = 5 \times 10^8 M_{\odot}$) and low-metallicity ($Z \approx 0.25 \ Z_{\odot}$) star-forming galaxy with a halflight radius of 1.5 kpc at z = 2.3

Extended Lya emission is detected out to ~ 25 kpc with a clear spatial variation in the observed double-peak profile, revealing a mixture of infall and outflows

Extracting kinematic properties requires a detailed Lya radiative transfer model

Mapping Gas Flows in Halos around Star-forming Galaxies

<u>M. Chen, HWC et al. (2021)</u>

Mapping Gas Flows in Halos around Star-forming Galaxies

<u>M. Chen, HWC et al. (2021)</u>

Mapping Gas Flows in Halos around Star-forming Galaxies

Spatial variations of Lya profiles are apparent between northern and southern nebulae

<u>M. Chen, HWC et al. (2021)</u>

the presence of a steep velocity gradient $(\Delta v / \Delta r_{\perp} \approx 25 \text{ km/s/kpc})$ in a continuous flow of high column density gas from star-forming regions into a lowdensity halo environment.

Mapping Feeding and Feedback in Quasar Host Halos

Ubiquitous Lya nebulae around z=3-4 quasars 30" 20" 10"

30" 20" 10" 40* 10" 30" 20" 10" 40* 20" Borisova et al. (2016) 10" Battaia et al. (2019) -0.2 37 80 -0.3 0.0 0.4 7.7 17 3.41.4

 $SB_{Ly \alpha} (10^{-18} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2})$

Mapping Feeding and Feedback in Quasar Host Halos

- Declining [OIII]/[OII] ratio with distance from the QSO supports the gas being photo ionized by the QSO
- Matching kinematics and morphologies to interacting galaxy pairs in the quasar host group support an origin in stripped ISM rather than large-scale quasar outflows

Johnson et al. (2018)

TURBULENT ENERGY CASCADE IN THE DIFFUSE CGM

moments of the velocity structure functions (VSFs)

 $S_p(r) = \langle |v(\mathbf{x}) - v(\mathbf{x} + \mathbf{r})|^p \rangle \propto r^{\zeta(p)}$

The Kolmogorov theory predicts that $\zeta(p) = p/3$ for homogeneous, isotropic, and incompressible fluids

- IFS observations of Ha filaments in intracluster medium enables turbulence measurements.
- The VSFs are found to be steeper than Kolmogorov. •
- A number of factors complicates the interpretation of these measurements, including PSF smoothing, low volume filling, large-scale bulk flows (see e.g., Zhang et al. 2022)

Mapping the Multiphase CGM with Absorption Spectroscopy

Mapping the Multiphase CGM with Absorption Spectroscopy

Tracers of multiphase CGM

Tumlinson, Peeples, Werk (2017)

Mapping the Multiphase CGM with Absorption Spectroscopy

Cross-section characterization of different ions in galactic halos

Ensemble average

Boksenberg & Sargent '78; Boksenberg+'80; Bergeron '86; Cristiani '87; Lanzetta & Bowen '90, '92; Steidel '93; Steidel+'94; Lanzetta+'95; Bowen+'95; Steidel+'97; Guillemin & Bergeron '97; Le Brun+'97; Chen+'98,01a; Tripp+'98; Chen+01b; Churchill '01; Steidel+'02; Bowen+'02; Rao+'03; Churchill+'03; Adelberger+'03,'05; Stocke+'06; Kacprzak+'07,'10; Nestor+'07; Chen & Tinker '08; Barton & Cooke '09; Chen & Mulchaey '09; Chen+'10a,b; Gauthier+'09,'10; Gauthier & Chen '11,'12; Lovegrove & Simcoe '11; Rao+'11; Nestor+'11; Borthakur+'11; Tripp+'11; Prochaska+'11; Ménard+'11; Tumlinson+'11; Thom+'12; Rakic+'12,'13; Rudie+'13; Stocke+'13; Werk+'13; Borthakur+'13; Liang & Chen '14

CONNECTING THE MULTIPHASE CGM WITH GALAXY PROPERTIES

Pushing to the low mass regime at M_{star} < 10⁹ M_{\odot}

$M_{star} \sim 8e7 M_{\odot}$ at d = 16 kpc

Johnson+2017

Zheng+2023

Pushing to the low mass regime at M_{star} < 10⁹ M_{\odot}

0.25

0.25

$M_{star} \sim 8e7 M_{\odot}$ at d = 16 kpc

Johnson+2017

How do the clumps form and evolve in low-mass halos?

Resolving the physical properties (n_H, T, Z) from observed relative abundance ratios between different ions

╷┎┎╾┦╺ 0.5 HI 1025 0 പ്രപ്ര 0.5 HI 972 ()᠂ᠣᢆᢧᢧᡗᡀ᠆᠇ᠥᡗᠼ 0.5 CII 1036 0 0.5 NII_1083 0 1 0.5 OVI 1031 0 -**P**--0.5 OVI 1037 0 -200200 0 Relative Velocity (km/s)

- broad spectral coverage of multiple ionization states
- high spectral resolution to differentiate gas kinematics and resolve the multiphase structure

Rudie+2019

- broad spectral coverage of multiple ionization states
- high spectral resolution to differentiate gas kinematics and resolve the multiphase structure

- broad spectral coverage of multiple ionization states
- resolve the multiphase structure

- broad spectral coverage of multiple ionization states
- high spectral resolution to differentiate gas kinematics and resolve the multiphase structure
- Uncertainties in the ionizing radiation field, global & local

- resolve the multiphase structure

- resolve the multiphase structure

- broad spectral coverage of multiple ionization states
- high spectral resolution to differentiate gas kinematics and resolve the multiphase structure
- local fluctuations in the ionizing radiation field
- non-solar elemental abundance pattern

HII region gas-phase elemental abundances

CONNECTING ENRICHMENT PATTERN FROM STARS/ISM TO THE CGM

complex mix of infall and outflows around a mature disk at z~0.4

Zahedy+2021

JBS

CONNECTING THE MULTIPHASE CGM WITH GALAXY PROPERTIES

Discovery of circumgalactic molecules at ~40 kpc from an elliptical galaxy

Boettcher+2021

CONNECTING THE MULTIPHASE CGM WITH GALAXY PROPERTIES

Dependence of Internal turbulent energy on star formation history

Thermal energy in individual clumps is $E_T = \frac{1}{\gamma - 1}kT$,

where $\gamma = 5/3$ for a monatomic gas

Turbulent energy is $E_{\text{turb}} = \frac{1}{2} \mu m_{\text{H}} v_{\text{turb}}^2$

The sound speed is $c_s^2 = \frac{\gamma kT}{r}$ $\mu m_{\rm H}$

We have $\frac{E_T}{E_{\text{total}}} = \frac{1}{1 + \frac{\gamma(\gamma - 1)}{M^2}}$, where $\mathcal{M} = \frac{v_{\text{turb}}}{c_s}$

massive, quenched halos exhibit a higher internal turbulent energy in the cool CGM than star-forming ones.

THE TURBULENT VELOCITY-SIZE CORRELATION

Summary on CGM Absorption

- resolved absorption component studies
- 2. thermodynamic, and chemical conditions of the diffuse multiphase CGM
- 3. components arising in the same galactic halo and must be accounted for in ionization models.
- Local fluctuations in the ionizing radiation field are possible, though no often. 4.
- 5. accreted low-metallicity gas
- 6.

Great details have been learned from cross-section studies but a deeper understanding of the gas physics still relies on

High-resolution absorption spectra of distant QSOs provide unsurpassed sensitivities for probing the physical,

Large variations in density, metallicity, and abundance pattern are directly seen between individually-resolved

Chemically evolved gas is seen in the low-metallicity CGM, indicating a mixture of chemically-enriched outflows and

The CGM is turbulent, and the turbulence is subsonic with a energy transfer rate at the level of 1% of what is seen in starforming regions. In addition, massive quiescent halos show a higher fraction of turbulent energy than star-forming halos.