Stellar feedback and HII regions: How stars affect their environment

Mélanie Chevance

chevance@uni-heidelberg.de

GISM2 2023

Emmy Noether-Programm

Outline

- I. The importance of feedback
- II. Stellar feedback mechanisms
- III. Impact of feedback on GMC scales
- V. Impact of feedback on galactic scales
- V. Conclusions/questions

I. The importance of feedback

I. Importance of feedback

The importance of feedback

- ★ Turbulence dissipates *quickly* —> gas heating
- ★ Cooling time of the ISM is *short* Without feedback: diffuse ISM —> collapse into dense clouds —> collapse into stars
- ★ Feedback is the reason we are not sitting in a black hole! With feedback: young stars inject energy and momentum in the gas —> limit/revert collapse —> "Self-regulation"

The importance of feedback

Some notes:

- ★ Turbulence creates *structure* in the ISM —> stars are born in a *clustered environment*
- ★ Massive stars are important feedback sources and live the shortest —> fast regulation
- ★ The effects of feedback are *correlated in space and time*

II. Stellar feedback mechanisms

JWST/NIRCam F187N F200W F335W F444W F470N

Stellar feedback mechanisms

- **Outflows** disperse the natal cores of individual stars
- **Non-ionizing FUV/optical radiation** heats the gas through the photoelectric effect
- ★ Ionizing EUV radiation photoevaporates dense material, producing high-pressure ionized gas
- **Stellar winds** create very hot, high-pressure bubbles
- **Radiation pressure** from (direct or indirect) momentum transfer of photons to the gas

★ Supernovae

★ Cosmic rays created in SNRs

Outflows

- ★ Accreting systems with *rotation* and a *magnetic field* tend to exhibit *bipolar outflows or collimated jets*
- Outflow speed for forming star:
 a few km/s to over 10³ km/s
- ★ Can generate turbulence, limit collapse rate, blow out parent cores
- Generally *cannot halt star formation*
- Very complete review: see Bally 2016 (ARA&A)

Outflows — Simulations

Turbulence+Radiation+Gravity+Stellar Model/Feedback

II. Feedback mechanisms

Mélanie Chevance

Non-ionizing radiation

- ★ Local UV (*non-ionizing*) photons from OB stars absorbed by small dust grains generates *photoelectric heating*
- ★ Important for thermal balance and chemistry in the WNM/CNM ($T \sim 100 8000 \text{ K}$)
- ★ Deposits momentum when absorbed or scattered by dust —> radiation pressure

Ionising radiation

- Photons > 13.6 eV from massive stars ionise nearby gas
- ★ For a fully sampled IFM, ionising photon rate: $Q_i = \Xi M_*$ with $\Xi = 3 \times 10^{13}$ photons s⁻¹ g⁻¹
- Balance *ionisation/recombination* sets the *Strömgren radius*: $\frac{4}{3}\pi r_{St}^3 \times n_e n_i \times \alpha_B = Q_i$
- ★ Hot gas —> overpressure —> expansion
- ★ Accelerated of ~ 10-30 km/s
 via internal pressure gradients

Ionising radiation — timescale

★ Solving to get radius expansion:
$$r_{\rm IF}(t) = r_{\rm St} \left(1 + \frac{7}{4} \left(\frac{4}{3} \right)^{1/2} \frac{c_s t}{r_{\rm St}} \right)$$

For
$$r_{\text{IF}} = r_{\text{GMC}}$$
 at $t = t_{\text{phot}}$:
$$t_{phot} = \frac{4}{7} \left(\frac{3}{4}\right)^{1/2} \frac{r_{\text{St}}}{c_s} \left[\left(\frac{r_{\text{GMC}}}{r_{\text{St}}}\right) \right]$$

II. Feedback mechanisms

×

Stellar winds

- ★ OB stars have very fast winds
- ★ Shock surrounding gas to create a high temperature (> 10⁶ K) bubble
- ★ Mass fluxes of $10^{-5} 10^{-4} \,\mathrm{M_{\odot} \, yr^{-1}}$ at $v_0 \sim 10^3 \,\mathrm{km/s}$

★ See review by *Smith 2014 (ARA&A)*

Stellar winds — timescale

★ Energy injection rate (for a fully sampled IMF):

$$\dot{E}/M_* = L_{\text{wind}}/M_* = \frac{1}{2}\dot{M}v_{\text{wind}}^2/M_*$$

★ Radius evolution of an energy-driven shock:

$$= \left(\frac{125}{154\pi} \frac{L_{\text{wind}} t^3}{\rho_{\text{GMC}}}\right)^{1/5}$$

Weaver et al. (1977)

★ For
$$r = r_{\text{GMC}}$$
 at $t = t_{\text{wind}}$:

$$t_{\rm wind} = \left(\frac{154\pi}{125} \frac{\rho_{\rm GMC}}{L_{\rm wind}}\right)^{1/3} r_{\rm GMC}^{5/3}$$

II. Feedback mechanisms

r(t)

Stellar winds — timescale

★ In reality, efficient turbulent mixing and cooling at the interface:

II. Feedback mechanisms

 10^{7}

 10^{6}

10⁵

 10^{3}

10²

104 🗵

20

15

10

5

-5

-10

Temperature

Radiation pressure

- A Photons transfer energy and *momentum* to the surrounding gas *and dust*, with $p = h\nu/c$
- ★ Direct absorption/scattering of photons by gas or dust Or indirect after absorption by dust and reemission in IR
- ★ For a (point) source of luminosity L: $P_{\rm rad}(r) = f_{\rm trap} \frac{L}{4\pi r^2 c}$

how much of this momentum is actually absorbed by the gas (Krumholz & Matzner 2009)

- ★ Significant *only* for massive stars, *small regions with high opacity*
- Cannot halt star formation

Radiation pressure — timescale

Solving the momentum equation for a constant volume density GMC, $r = r_{GMC}$ at $t = t_{rad}$

$$t_{\rm rad} = \left(\frac{2\pi c}{3} \frac{\rho_{\rm GMC}}{L_{\rm bol}}\right)^{1/2} r_{\rm GMC}^2$$

II. Feedback mechanisms

Mélanie Chevance

Supernovae

- ★ Largest source of *momentum injection* to the ISM from stellar feedback
- ★ Each supernova yields 10⁵¹ erg, much of which ends up as thermal energy in a hot phase with a long cooling time (hot remnant)
- ★ Drive turbulence in the molecular gas

- Efficiency depends on the environment (density) and clustering
- Limited importance for halting star formation (time delay)

See also: Iffrig+14, Iffrig & Hennebelle 15, C.-G. Kim & Ostriker 15, Gatte+15, Martizzi+15, Walch & Naab 15

Supernovae delay time

How many stars explode as SN and when?

★ Shape of the IMF -> *More SNe* from *low-mass* progenitors (≥ 8 M_☉)

Supernovae delay time

How many stars explode as SN and when?

- ★ Shape of the IMF -> *More SNe* from *low-mass* progenitors (≥ 8 M_☉)
- \bigstar 'Failed SNe' for stars $\gtrsim 20 \, {
 m M}_{\odot}$ -> black holes

Supernovae delay time

How many stars explode as SN and when?

Stellar feedback mechanisms

- **Outflows** disperse the natal cores of individual stars
- **Non-ionizing FUV/optical radiation** heats the gas through the photoelectric effect
- ★ Ionizing EUV radiation photoevaporates dense material, producing high-pressure ionized gas
- **Stellar winds** create very hot, high-pressure bubbles
- **Radiation pressure** from (direct or indirect) momentum transfer of photons to the gas

★ Supernovae

★ Cosmic rays created in SNRs

 $M_0 = 2 \times 10^4 \,\mathrm{M_{\odot}}$ $R_0 = 10 \,\mathrm{pc}$

Credit: David Guszejnov, Mike Grudic, and the STARFORGE Project

III. Impact of feedback on GMC scales

How do (massive) stars impact their surrounding?

 \star Heat and ionise the gas

- ★ Disrupt GMCs
- ★ Limit star formation efficiency
- ★ Impact the IMF

Heating, ionising and expelling the gas — Recent observations

III. Impact on GMC scales

Mélanie Chevance

How do (massive) stars impact their surrounding?

 \star Heat and ionise the gas

- ★ Disrupt GMCs
- ★ Limit star formation efficiency
- ★ Impact the IMF

III. Impact on GMC scales

Mélanie Chevance

Do clouds live for much longer than massive stars or for a similar timescale?

Quasi-equilibrium or rapid cycling?

(clouds form stars for many dynamical times)

(clouds are destroyed by massive stars)

Gas and young stars correlated on small scales

Gas and young stars *decorrelate* on small scales

III. Impact on GMC scales

Mélanie Chevance

Small-scale variations of gas-to-SFR ratio reflect underlying timeline (Kruijssen & Longmore 2014, Kruijssen et al. 2018)

Small-scale variations of gas-to-SFR ratio reflect underlying timeline (Kruijssen & Longmore 2014, Kruijssen et al. 2018)

Gas-to-SFR ratio as a function of spatial scale

Small-scale variations of gas-to-SFR ratio reflect underlying timeline (Kruijssen & Longmore 2014, Kruijssen et al. 2018)

Application to an example — NGC300

Tracing *past* star formation

III. Impact on GMC scales

How do (massive) stars impact their surrounding?

 \star Heat and ionise the gas

- ★ Disrupt GMCs
- ★ Limit star formation efficiency
- ★ Impact the IMF

Cloud evolutionary cycle in the Phangs galaxies

IC1954 . CO peaks NGC0628 NGC0685 NGC1087 NGC4941 IC5273 NGC1097 Hα peaks ***** < 0.1 ≗ 10.0 NGC1300 NGC1385 NGC1433 NGC1365 NGC1511 NGC1512 NGC5530 ****** **** ******** ********* ******** ŧλ $+\lambda$ ₽ 10.0 NGC1546 NGC1559 NGC1566 NGC1672 NGC1792 NGC1809 NGC4951 **** ******* +++++ ++++ < 0.1 -±λ Lλ $+\lambda$ 2 10.0 NGC2090 NGC2283 NCC2835 NGC2997 NGC3059 NGC3351 NGC5643 ***** ***** **** ********* ***** ++++* . +λ ψX 1) $\psi \lambda$ 0.1: € 10.0 NGC3507 NGC3627 NGC4254 NGC4298 NGC3511 NGC3596 NGC5042 ******** **** 202 ********** ********* al. ŧλ ŧλ $\downarrow \lambda$ $\downarrow \lambda$ € 10.0 NGC4303 NGC4321 NGC4496A NGC4535 NGC4540 NGC4548 NGC6300 et ********* ******** ***** ******* Chevance 1.0 ŧλ ±λ ±λ ŧλ ψλ < 0.1 € 10.0 NGC4569 NGC4571 NGC4654 NGC4689 NGC4731 NGC4781 NGC5068 ******* ******** **** ******* 1.0 Kim, 0 0.1

Universal decorrelation: *Rapid cycling* between cold gas and young stars

III. Impact on GMC scales

III. Impact on GMC scales

Rapid cloud destruction From resolving young stellar clusters

★ Young clusters are found to be gas-free after 3-5 Myr Whitmore et al. 2014, Hollyhead et al. 2015, Grasha et al. 2018, 2019, Hannon et al. 2019, Messa et al. 2021

Requires resolving and age dating young clusters: limited sample Antennae, M83, NGC 7793, M51, NGC 4395, NGC 1313

Rapid cloud destruction by stellar feedback

- ★ Molecular cloud disrupted within 1-5 Myr (pre-
- ★ Environmentally dependant timescale

Rapid cloud destruction by stellar feedback

III. Impact on GMC scales

Rapid cloud destruction by stellar feedback

- ★ Molecular cloud disrupted within 1-5 Myr (pre-SN)
- ★ Environmentally dependant timescale
- ★ Limits star formation efficiency
- ★ Early (pre-SN) feedback pre-processes the medium

63 SNe in 31 galaxies

—> rarely correspond to the CO peak

What limits the star formation efficiency? What feedback mechanisms can disperse the gas so quickly?

Jets and outflows (disperse cores, not GMCs)

What limits the star formation efficiency? What feedback mechanisms can disperse the gas so quickly?

- Pre-supernova mechanisms play an important role in dispersing the clouds.
- Their coupling efficiency with the surrounding gas is not 100%.

What limits the star formation efficiency? What feedback mechanisms can disperse the gas so quickly?

III. Impact on GMC scales

Dominant feedback mechanism depends on *evolutionary stage* and *environment*

Dominant feedback mechanism depends on *evolutionary stage* and *environment*

Caveats:

- Different observational tracers in different studies/environments
- Unresolved HII regions in nearby galaxies
- JWST for heated dust pressure in nearby galaxies

Kim, Chevance et al. 2021

> Pre-James Webb Space Telescope: 6 galaxies

> Pre-James Webb Space Telescope: 6 galaxies

Now: ongoing JWST Large Programme for 19 additional galaxies approved JWST Large Programme for 55 additional galaxies

III. Impact on GMC scales

Kim, Chevance et al. 2021

> Pre-James Webb Space Telescope: 6 galaxies

Feedback coupling efficiency — Escape fraction

III. Impact on GMC scales

Feedback coupling efficiency — Escape fraction

- **Feedback coupling efficiencies of a few %,** qualitatively similar to simulations (e.g. Howard et al. 2018, Kim et al. 2019, Rahner et al. 2019, Pellegrini et al. 2020)
- ★ Explain (at least partially) observed diffuse ionised hydrogen emission throughout galaxies (e.g. Poetrodjojo et al. 2019, Lucas et al. 2020)
- Environmental dependence: more porous gas at low metallicities (e.g. Petitpas & Wilson 1998; Lebouteiller et al. 2012; Cormier et al. 2015; Chevance et al. 2016; Kimm et al. 2019, Ramambason et al. submitted)
- **Energy losses: photon leakage** (rather than radiative cooling) likely dominates

III. Impact on GMC scales

How do (massive) stars impact their surrounding?

 \star Heat and ionise the gas

- ★ Disrupt GMCs
- ★ Limit star formation efficiency
- ★ Impact the IMF

Impact on the IMF

- ★ **Protostellar jets** reduce stellar mass scales by:
 - directly removing accreted material
 - disrupting the accretion flow around stars
- ★ They cannot prevent the most massive stars from undergoing runaway accretion
- ★ Radiation, winds and SN have little direct effect on the IMF (prevent runaway accretion of massive stars)

IV. Impact of feedback on galactic scales

Is the galaxy at large modified by these smallscale feedback mechanisms? (*i.e. do we care?*)

Galaxy simulations with identical initial conditions

different SN delay time

Keller & Kruijssen 2020

different feedback mechanisms

Gas density: low – medium – high

Smith et al. 2021

IV. Impact on galactic scales

Impact of feedback on galactic scales

★ Limits SF efficiency —> *regulates SFR*

★ Changes the *morphology* of galaxies at large

★ Regulates *galactic outflows*

IV. Impact on galactic scales

- ★ Galactic disk = system in equilibrium (Ostriker et al. 2010, Ostriker & Shetty 2011)
 → sum of turbulent+thermal+magnetic (+cosmic ray+radiation) terms balance ISM weight
- ★ Turbulence dissipation and radiation cooling *must to be compensated*

IV. Impact on galactic scales

X

- ★ Galactic disk = system in equilibrium (Ostriker et al. 2010, Ostriker & Shetty 2011)
 → sum of turbulent+thermal+magnetic (+cosmic ray+radiation) terms balance ISM weight
- ★ Turbulence dissipation and radiation cooling *must to be compensated*
- ★ Star formation is a source of energy and momentum via stellar and supernovae feedback —> prevents collapse

★ Local SFR *required* to keep the ISM in a long-term equilibrium set by the weight of the ISM $-> \Sigma_{SFR} \propto$ weight of the ISM per unit area (= *dynamical equilibrium pressure* P_{DF})

Feedback yield: $Y_{\rm FB} = P_{\rm DE} / \Sigma_{\rm SFR}$

(also see Ostriker & Kim 2022)

IV. Impact on galactic scales

IV. Impact on galactic scales

Impact of feedback on galactic scales

★ Limits SF efficiency —> *regulates SFR*

★ Changes the *morphology* of galaxies at large

★ Regulates *galactic outflows*

Including stellar feedback in galaxy formation and evolution simulations *Challenge*: The range of *temporal and spatial scales is so large*,

that models and simulations require *sub-resolution prescriptions*

Including stellar feedback in galaxy formation and evolution simulations

★ Tuning the (*many*) free parameters

- \star Using the results of small-scale simulations
- ★ Using empirical results from observations

Impact of the details of stellar feedback modelling on global galactic properties

The 'Empirically Motivated Physics' suite of simulations adopts an empirically-motivated feedback model

IV. Impact on galactic scales

Impact of the details of stellar feedback modelling on global galactic properties

The 'Empirically Motivated Physics' suite of simulations adopts an empirically-motivated feedback model

Supernova-only case:

Empirically-motivated feedback case:

Smoother discs in the EMP model compared to SN-only model

IV. Impact on galactic scales
Impact of the details of stellar feedback modelling on global galactic properties

The 'Empirically Motivated Physics' suite of simulations adopts an empirically-motivated feedback model

SFR and Schmidt-Kennicutt relation consistent with observations

Empirically-motivated feedback case:

IV. Impact on galactic scales

Mélanie Chevance

Impact of the details of stellar feedback modelling on global galactic properties

The 'Empirically Motivated Physics' suite of simulations adopts an empirically-motivated feedback model

Weaker outflows in the *EMP model* compared to *SN-only model*

Empirically-motivated feedback case:

IV. Impact on galactic scales

Mélanie Chevance

Impact of feedback

On GMC scales:

- \star Heat and ionise the gas
- ★ Disrupt GMCs
- ★ Limit star formation efficiency
- ★ Impact the IMF

On galactic scales:

- ★ Limits SF efficiency —> *regulates SFR*
- ★ Changes the *morphology* of galaxies at large
- ★ Regulates *galactic outflows*

IV. Impact on galactic scales

Major open questions

Fundamental physics question:

★ What is the deposition rate of mass, energy and momentum by feedback as a function of time, space and environment?

Steps needed to address this overarching question:

- ★ What is (are) the dominant feedback mechanism(s) as a function of evolutionary age and environment?
- ★ How do the different feedback mechanisms interact with each other?
- ★ How do feedback mechanisms couple across all spatial scales, from single star formation to entire galaxies?
- ★ How do we capture all of these processes in simulations? Is there a theory of everything or will we always need multiple models?
- ★ How do magnetic fields affect the deposition of mass, energy and momentum by feedback?

V. Conclusions

References

Books and General Reviews:

- Krumholz et al., PPVI, 2014
- Dale, New Astronomy reviews, 2015
- Krumholz, Star Formation (esp. Chapter 7), 2017
- Girichidis et al., Space Science Reviews, 2020
- Rosen et al., Space Science Reviews, 2020
- Chevance et al., PPVII, 2023

V. Conclusions