

Credit: Rogelio Bernal Andreo

Nathalie Ysard Institut d'Astrophysique Spatiale, CNRS (France)

Dust everywhere

NGC 3190, VLT credit: ESO

- Interstellar medium less than 10% of the Milky Way mass Dust grains make only ~1 % of that mass Dust grains are tiny from a few Å to about 1 μm
- So why bother ? Because dust is everywhere !
 - \rightarrow extinction of UV and visible starlight
 - \rightarrow emission from near-IR to microwave
- An excellent tracer of matter in galaxies but also a major actor of its evolution

A major actor of matter evolution at all scales

- Heating of the gas by photoelectic effect diffuse ISM (A_V < 1) & photon-dominated regions (PDRs)
- H₂ formation only possible on the grain surfaces intitiates all interstellar chemistry
- Determines if a cloud is optically thin or thick Molecules protected from photodissociation Reduced ionisation fraction Gas cooling through collisions
- Tracer for cloud masses & magnetic field

All the above processes depend upon the exact grain size, structure, composition, shape and mass

small carbonaceous particles

C-C and C-H on aromatic rings on aliphatic chains on olefinic bonds

For spherical particles with radius *a*, one can define extinction cross-sections:

Dust basics: extinction & emission

Grain heating: absorption of UV/visible photons Grain cooling: thermal emission of IR photons

Spherical grains of radius *a* illuminated by a radiation field density u_{ν}

$$E_{abs} = \int_0^\infty 4\pi a^2 Q_{abs}(\nu)\pi \frac{CU_{\nu}}{4\pi} d\nu$$

Dust basics: extinction & emission

Grain heating: absorption of UV/visible photons Grain cooling: thermal emission of IR photons

Spherical grains of radius *a* illuminated by a radiation field density u_{ν}

Dust basics: extinction & emission

Grain heating: absorption of UV/visible photons Grain cooling: thermal emission of IR photons

Spherical grains of radius *a* illuminated by a radiation field density u_{ν}

Emitted energy by a grain at temperature T

$$E_{em} = \int_0^\infty 4\pi a^2 Q_{abs}(\nu) \pi B_{\nu}(T) d\nu$$

Dust basics: extinction & emission

Grain heating: absorption of UV/visible photons Grain cooling: thermal emission of IR photons

Spherical grains of radius *a* illuminated by a radiation field density u_{ν}

small grains \rightarrow weak heat capacity at first order $E_{therm} \sim 3N_{at}k_BT$ $C(T) \sim 3N_{at}k_B$ one UV photon \rightarrow quick and high T increase T ~ h ν / $3N_{at}k_B$ 30 atoms (~0.5nm) + <h ν > = 8eV => ~ 1000K!

quick cooling until the next absorption event

strong temperature fluctuations if
$$hv_m > \int_0^{T_{eq}} C(T) dT$$

starting from T_0 $hv = \int_{T_0}^{T} C(T) dT$
cooling as $\frac{dT}{dt} = \frac{1}{C(T)} \int_0^{\infty} 4\pi a^2 Q_{abs}(v) \pi B_v(T) dv$

small grains \rightarrow weak heat capacity at first order $E_{therm} \sim 3N_{at}k_{B}T$ $C(T) \sim 3N_{at}k_{B}$ one UV photon \rightarrow quick and high T increase T ~ $h\nu$ / $3N_{at}k_B$ 30 atoms (~0.5nm) + $\langle h\nu \rangle = 8eV = \rangle ~ 1000K!$

quick cooling until the next absorption event

smallest hydrocarbons ~ 1 year

small grains \rightarrow weak heat capacity at first order $E_{therm} \sim 3N_{at}k_BT$ $C(T) \sim 3N_{at}k_B$

P

one UV photon \rightarrow quick and high T increase T ~ $h\nu$ / $3N_{at}k_B$ 30 atoms (~0.5nm) + $\langle h\nu \rangle = 8eV = \rangle ~ 1000K!$

quick cooling until the next absorption event

strong temperature fluctuations if
$$hv_m > \int_0^{T_{eq}} C(T) dT$$

starting from T_0 $hv = \int_0^T C(T) dT$
cooling as $\frac{dT}{dt} = \frac{1}{C(T)} \int_0^{\infty} 4\pi a^2 Q_{abs}(v) \pi B_v(T) dv$ \longrightarrow small grain emission
Lèger et al. (1989)
Draine & Li (2001)
Krügel (2002)
Lequeux (2002, 2005)

Basics of all dust models

- Chemical composition
 - \rightarrow m = n + ik: from the lab ? empirical ?
 - \rightarrow composite grains ?
 - \rightarrow inclusions, ice mantles ?
- Structure
 - → compact vs. porous
 - → core/mantle
 - \rightarrow single grains vs. aggregates
 - \rightarrow spheres vs. spheroids vs. irregular grains

non-trivial step

Absorption efficiency $Q_{abs}(a, \lambda, T?)$ Scattering efficiency $Q_{sca}(a, \lambda)$ Scattering phase function $g(a, \lambda)$ Heat capacity C(a, T)

- Size distribution
 - \rightarrow a_{min} , a_{max}
 - \rightarrow log-normal, power-law, MRN, weird ?

Calculation of the optical properties: how?

•	Compact spherical grains Compact spherical grains with mantles	Mie: BHMIE BHCOAT 🔎 Van de Hulst (1957), Bohren & Huffman (1983)
•	Porous grains Composite grains → random distribution	Effective Medium Theory (EMT) Maxwell Garnett or Bruggeman Ø Van de Hulst (1957), Bohren & Huffman (1983)
Compa	Aggregates with one-point contact	T-MATRIX Ø Mishenko (2000)
	Aggregates with contact surface area Grains of any shape Composite/porous grains → controlled distribution	Discrete Dipole Approximation (DDA) Draine & Flatau (1994), Yurkin & Hoekstra (2011)
	Spheroidal grains with or without mantles rison of methods ki & Tanaka (2018)	DDA, T-MATRIX Analytical function in the Rayleigh limit Geometric limit in the UV & Van de Hulst (1957), Bohren & Huffman (1983)

in

Lifecycle of interstellar dust: a restless journey

Galliano (2022, HDR)

Lifecycle of interstellar dust: a restless journey

Jones et al. (2013)

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - ightarrow observations of the dense ISM –
 - \rightarrow observations of PDRs
- Dust models: 2 public examples
 → an empirical model
 → a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - \rightarrow observations of the dense ISM
 - \rightarrow observations of PDRs
- Dust models: 2 public examples
 → an empirical model
 → a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

From observations to grain properties

What do we have to constrain the grain properties?

- Depletion measurements + X-ray \rightarrow composition
- Extinction

 $E(B-V) = A_B - A_V \& R_V = A_V / E(B-V)$ mid-IR silicate bands at ~ 10 and 18 µm

Emission

mid-IR to far-IR ratio modified BB fit $\rightarrow I_{\nu} = N_{H} \sigma_{\nu 0} B_{\nu}(T) (\nu/\nu_{0})^{\beta}$ optical depth $\rightarrow \tau_{\nu 0} = N_{H} \sigma_{\nu 0}$

- Scattered light from visible to mid-IR \rightarrow size
- Polarisation

 $\lambda_{max} \rightarrow$ peak wavelength of starlight polarisation P/I \rightarrow polarisation fraction in far-IR/submm

From observations to grain properties

What do we have to constrain the grain properties?

- Depletion measurements + X-ray \rightarrow composition
- Extinction

 $E(B-V) = A_B - A_V \& R_V = A_V / E(B-V)$ mid-IR silicate bands at ~ 10 and 18 µm

Emission

mid-IR to far-IR ratio modified BB fit $\rightarrow I_{\nu} = N_{H} \sigma_{\nu 0} B_{\nu}(T) (\nu/\nu_{0})^{\beta}$ optical depth $\rightarrow \tau_{\nu 0} = N_{H} \sigma_{\nu 0}$

- Scattered light from visible to mid-IR \rightarrow size
- Polarisation

 $\lambda_{max} \rightarrow$ peak wavelength of starlight polarisation P/I \rightarrow polarisation fraction in far-IR/submm

Grain composition, abundance, size, shape, structure...

Variations in the extinction curve Gordon et al. (2021), Decleir et al. (2022)

- 16 reddened stars Spitzer IRS spectra
- A(V) < 3 Silicate band-to-continuum ratio increases with increasing A(V)
 - Small variations in the near-IR (IRTF SpeX)

Variation in grain size distributions ? Iron nano-inclusions vs. Fe²⁺ in the silicate matrix ? Different silicate/carbon mixing ? Different grain shapes ?

Variations in the extinction curve Gordon et al. (2021), Decleir et al. (2022)

- 16 reddened stars Spitzer IRS spectra
- A(V) < 3 Silicate band-to-continuum ratio increases with increasing A(V)
 - Small variations in the near-IR (IRTF SpeX)

Variation in grain size distributions ? Iron nano-inclusions vs. Fe²⁺ in the silicate matrix ? Different silicate/carbon mixing ? Different grain shapes ?

All-diffuse-sky variations in the dust properties Planck Collaboration XI (2014): N_H < 3×10²⁰ H/cm²

All-diffuse-sky variations in the dust properties Planck Collaboration XI (2014): $N_H < 3 \times 10^{20}$ H/cm²

- N_H < 3×10²⁰ H/cm²
- E(B-V) from SDSS data towards quasars
- Observational results
 - $\rightarrow \beta$ -T variations
 - \rightarrow luminosity independent of T
 - \rightarrow hotter grains = less emissive grains

Carbon depletion in the diffuse ISM Parvathi et al. (2012)

 21 Galactic sightlines toward neutral medium CII measurements from the 1334 Å transition local variations in the total carbon abundance gas+dust local variations in the carbon depletion

Variations in the dust opacity Nguyen et al. (2018): 93 LOS with $10^{20} \le N_H \le 3 \times 10^{21}$ H/cm²

Optical depth

- 34 atomic lines of sight +40 % in opacity when $N_{\rm H}$ > 5×10²⁰ H/cm²
- Very little variations in E(B-V)/N_H E(B-V) = A_B - A_V
- Increase in dust mass or change in dust properties ?

Is the canonical Bohlin's ratio still canonical ? No. Used to normalise dust models

- Bohlin et al. (1978) \rightarrow N_H/E(B-V) = 5.8×10²¹ cm²/mag
- Liszt (2014) \rightarrow N_H/E(B-V) = 8.3×10²¹ cm²/mag
- Planck Collaboration XI (2014) \rightarrow N_H/E(B-V) = 7×10²¹ cm²/mag
- Lenz et al. (2017) $\rightarrow N_H/E(B-V) = 8.8 \times 10^{21} \text{ cm}^2/\text{mag}$
- Rémy et al. (2018) \rightarrow N_H/E(B-V) = 3.9 to 6.2×10²¹ cm²/mag
- Nguyen et al. (2018) \rightarrow N_H/E(B-V) = 9.4×10²¹ cm²/mag

Most recent studies find ratios 20 to 60 % higher Be careful when comparing dust models to what ratio they are normalised

Remember that variations in the dust properties are expected in the diffuse ISM

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - \rightarrow observations of the dense ISM
 - \rightarrow observations of PDRs
- Dust models: 2 public examples
 → an empirical model
 → a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

Carbon depletion in the diffuse ISM Parvathi et al. (2012)

 21 Galactic sightlines toward neutral medium CII measurements from the 1334 Å transition local variations in the total carbon abundance gas+dust local variations in the carbon depletion

Carbon depletion in the dense ISM Parvathi et al. (2012)

• What can happen to a grain when the local density increases?

Accretion of gas phase carbon $(A_v > 1-2)$? Grain-grain coagulation $(A_v > 2-3)$? Ice mantle formation $(A_v > 3)$?

Column density of C in dust

Carbon depletion in the dense ISM Parvathi et al. (2012)

• What can happen to a grain when the local density increases?

Accretion of gas phase carbon $(A_v > 1-2)$? Grain-grain coagulation $(A_v > 2-3)$? Ice mantle formation $(A_v > 3)$?

Carbon depletion in the dense ISM Parvathi et al. (2012)

• What can happen to a grain when the local density increases?

Accretion of gas phase carbon $(A_V > 1-2)$? Grain-grain coagulation $(A_V > 2-3)$? Ice mantle formation $(A_V > 3)$?

Depletion of heavier elements Jenkins (2009)

- Depletion of heavier elements Mg, Si, O, Fe, Cr, Ni, Ti, S...
- Depletion of 17 elements on 243 sightlines Local variations in [X_{gas}/H] strengths Linear relation between the various log. of [X_{gas}/H]

Variations in the silicate mid-IR features

McClure (2009)

• Sample

24 GO-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μm (2MASS)
- Observational results for A_K > 0.5 (⇔ A_V ~ 4) extinction curve flattening widening of both bands BUT peak positions unchanged variations correlated with ice features

Variations in the silicate mid-IR features

McClure (2009)

• Sample

24 G0-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μm (2MASS)
- Observational results for A_κ > 0.5 (⇔ A_ν ~ 4) extinction curve flattening widening of both bands BUT **peak positions unchanged** variations correlated with ice features

Grain size cannot exceed ~ $1 \, \mu m$

Variations in the silicate mid-IR features

McClure (2009)

• Sample

24 GO-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μm (2MASS)
- Observational results for A_K > 0.5 (⇔ A_V ~ 4)
 extinction curve flattening
 widening of both bands
 BUT peak positions unchanged
 variations correlated with ice features

Grain size cannot exceed ~ 1 μm Carbon accretion ?

Variations in the silicate mid-IR features McClure (2009)

• Sample

24 G0-M4 III stars behind dark clouds Chameleon, Serpens, Taurus Barnard 68, Barnard 59, IC 5146

- Normalisation to K band at 2.2 μm (2MASS)
- Observational results for A_K > 0.5 (⇔ A_V ~ 4) extinction curve flattening widening of both bands BUT peak positions unchanged variations correlated with ice features

Grain size cannot exceed ~ 1 µm Carbon accretion ? Carbon and ice accretion ? From isolated grains to icy aggegates ? → widening only of the 18 µm band

Variations in total-to-selective extinction R_V Whittet et al. (2001) & Campeggio et al. (2007)

- Increase in R_v with A_v
- Increase when water ice features are detected
 - **b** Grain growth associated to ice accretion

Variations in the mid- to far-IR SED Stepnik et al. (2003)

Taurus molecular cloud

L1506 filament

0

Offset (')

-10

-20

0

20

10

 \rightarrow small grains disappear from the diffuse to the dense ISM

4 Small grain accretion onto larger grains → grain growth

Visible extinction vs. far-IR SED Ysard et al. (2013)

- Aggregates for 1000 < n_{H} < 2000 H/cm³
 - $\rightarrow A_{v} \sim 2 \text{ to } 4$
- Same as increase in R_v , ice features, mid-IR silicate bands
 - \rightarrow Grain growth
 - \rightarrow From isolated grains to aggregates

 (10^{-27} cm^2)

 $z^{\scriptscriptstyle \mathrm{I}}$

 $flace{T}_{353GHz}$

20

15

10

5

Variations in the far-IR SED Rémy et al. (2017, 2018)

 $T_{dust}(K)$

- Observations of 6 nearby anti-centre clouds
- Usual behaviour of dense clouds

 R_{DG}

19

20

18

T_{dust} (K)

21

Grain growth From isolated grains to aggregates

Carbon accretion ? DCD-TLS ?

^O Mény et al. (2007) Koehler et al. (2015)

• Gradual evolution across phases significant in DNM stronger in CO

Variations in the dust scattering efficiency Cloud- & Core-shine

- In the visible: 30's Struve & Elvey (1936)
- In the near-IR: 90's Witt et al. (1994)
- In the mid-IR: 2010
 Pagani et al. (2010)
- Albedo and asymmetry parameter Mattila (1970ab, 2018)
- Scattering by bigger grains than in the diffuse ISM Steinacker et al. (2010) Lefèvre et al. (2014)

Grain growth

Variations in the dust scattering efficiency Andersen et al. (2014) & Ysard et al. (2016)

 Andersen et al. (2014)
 → common density threshold for coreshine & ice feature at 3 μm

 Ysard et al. (2016) need for aggregates when 1000 < n_H < 2000 H/cm³ → A_V ~ 2 to 4

0.3

Variations in the visible starlight polarisation

 \rightarrow threshold around A_V = 3-4

4 Grain growth

Panciullo et al. (2017)

Il'in et al. (2018): Barnard 5

Extinction $(A_{,,})$

0.9

0,6

 λ_{max} (µm)

Summary

• What should a Galactic dust model fit ?

- \rightarrow observations of the diffuse ISM
- ightarrow observations of the dense ISM -
- \rightarrow observations of PDRs
- Dust models: 2 public examples
 → an empirical model
 → a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

The Orion Bar seen by the JWST (ERS PDR4All) PI: O. Berné, E. Habart, E. Peeters

Dust evolution across the Orion Bar Elyajouri et al. (in prep)

Adapted from Habart et al. (subm.) Peeters et al. (in prep)

Variations in band-to-continuum ratio 3.3 to 3.4 band ratio

Dust evolution across the Orion Bar Nano-grain sizes & hydrogenation

Adapted from Habart et al. (subm.) Peeters et al. (in prep)

as in DISM a_{min} = 0.4 nm

 $E_{\alpha} = 0.1 \text{ eV} \iff X_{H} \sim 0.02$

Variations in band-to-continuum ratio 3.3 to 3.4 band ratio

 \rightarrow minimum grain size & hydrogenation (E_g)

Dust evolution across the Orion Bar Nano-grain sizes & hydrogenation

Dust evolution across the Orion Bar Radiative transfer model (plane parallel)

Adapted from Habart et al. (subm.)

same methodology as in Schirmer et al. (2020, 2022) THEMIS + DustEM + SOC nano-grains with Eg = 0.03 eV pseudo-aggregates from Ysard et al. (2019)

Dust evolution across the Orion Bar

- Fit emission profiles in 6 NIRCam + MIRI filters A posteriori comparison with NIRSpec and MRS spectra
- 15 times less abundant nano-grains than in the diffuse ISM
- Consequences for estimates of the gas temperature, H₂ formation and intensities of the H₂ pure rotational lines
 Ø Meshaka et al. (in prep.)
 Ø Murga et al. (2023)
 Ø Schirmer et al. (2021)
 Ø Jones & Habart (2015)

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - ightarrow observations of the dense ISM –
 - \rightarrow observations of PDRs

• Dust models: 2 public examples

- \rightarrow an empirical model
- \rightarrow a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

Observational constraints [sky]

 Compiègne et al. (2011)
 10⁻²⁶

 Planck collab. XVII (2014)
 (10⁻²⁷)

 Planck collab. XXII (2015)
 10⁻²⁸

 Bianchi et al. (2017)
 10⁻²⁹

 Planck collab. XI (2020)
 10⁻²⁹

Gordon et al. (2021) Decleir et al. (2022)

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - ightarrow observations of the dense ISM –
 - \rightarrow observations of PDRs
- Dust models: 2 public examples
 → an empirical model
 - \rightarrow a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

An empirical model: astrodust + astroPAHs

Dust components Draine & Hensley (2021 a)

astroPAHs Draine & Li (2007) astrodust

+

Assumption about composition:

amorphous silicate hydrocarbon material other materials (e.g. Fe oxides, Al₂O₃, CaCO₃)

An empirical model: astrodust + astroPAHs

Definition of the astrodust properties Draine & Hensley (2021 a, b, c)

• Use of IR absorption to empirically derive a complex dielectric function for "astrodust" that fits perfectly the observations (in the Rayleigh limit, $a \ll \lambda$, extinction dominated by absorption and C_{abs}/V is directly related to ε_{ad} and independent of a)

$$<\kappa_{\rm abs}> = \frac{2\pi N}{3\rho\lambda} {
m Im} \left(\frac{\epsilon - \epsilon_m}{\epsilon_m + L(\epsilon - \epsilon_m)} + \frac{4(\epsilon - \epsilon_m)}{2\epsilon_m + (1 - L)(\epsilon - \epsilon_m)} \right)$$

• Check if consistent with polarised extinction

Gets optical properties associated with shape and porosity

Figure 1. Approach used to determine the shape and dielectric function ϵ_{Ad} of the silicate-bearing "astrodust" grains. \mathcal{P} is the porosity of the astrodust grains (see text).

An empirical model: astrodust + astroPAHs

Fitting results Hensley & Draine (2022)

Draine & Hensley (2021 a, b, c)
 Hensley & Draine (2020, 2022)
 Draine (2016)
 Draine & Li (2007)

Dust model available here: https://dataverse.harvard.edu/dataverse/astrodust

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - ightarrow observations of the dense ISM –
 - \rightarrow observations of PDRs
- Dust models: 2 public examples
 - \rightarrow an empirical model
 - \rightarrow a lab-based model
- A few points to bear in mind when using dust models
 - \rightarrow uncertainties in models
 - \rightarrow grain size determination
 - \rightarrow cloud mass estimate

Dust components Jones et al. (2013)

Mass log($10^{29} \text{ n}_{\text{H}}^{-1}$ a dm/da)

0.1

IR absorption bands visible/MIR extinction FIR/submm emission

Dust model available here: https://www.ias.u-psud.fr/themis/ https://www.ias.u-psud.fr/DUSTEM/ Jones, Köhler, Ysard et al. (2017)
Ysard, Köhler, Jones et al. (2015)
Köhler, Jones & Ysard (2014)
Jones et al. (2013)

Powerlaw

a-C:H/a-C

log-normal

1

10

a (nm)

Size distribution

a-Sil/a

_log-normal

a-C:H

100

1000

104

Observational constraints [lab] Demyk et al. (2017, 2022)

- X35 → stoechiometry of forsterite
 X50a, X50b → stoechiometry of enstatite
 X40 → in-between
- Major differences at all wavelengths, high variability with wavelength and composition

- Spectral index variations from 2.5-3.0 to 1.7-2.5 from far-IR to mm
- Submm absorption efficiencies × 1.5
- Mid-IR silicate features shift by a few 0.1 μ m

Optical constants → carbonaceous grains Description of the mantle

Fitting results

A lab based model

Comparison with Planck collaboration XI (2014)

astrodust + astroPAHs
various lab silicates + a-C

Laboratory data in agreement with:

- \rightarrow average high latitude SED & extinction
- \rightarrow dispersion in the derived dust parameters

Summary

- What should a Galactic dust model fit ?
 - \rightarrow observations of the diffuse ISM
 - ightarrow observations of the dense ISM –
 - \rightarrow observations of PDRs
- Dust models: 2 public examples
 → an empirical model
 → a lab-based model

• A few points to bear in mind when using dust models

- \rightarrow uncertainties in models
- \rightarrow grain size determination
- \rightarrow cloud mass estimate

Uncertainties in models

Uncertainties in the optical constants Demyk et al. (2017, 2022)

Uncertainties on size distribution shape distribution visible optical properties

Δn < 10 % 5 % < Δk < 20 %

$$n = \sqrt{\frac{\sqrt{\epsilon'^2 + \epsilon''^2} + \epsilon'}{2}} < \kappa_{abs} >= \frac{2\pi N}{3\rho\lambda} \operatorname{Im}\left(\frac{\epsilon - \epsilon_m}{\epsilon_m + L(\epsilon - \epsilon_m)} + \frac{4(\epsilon - \epsilon_m)}{2\epsilon_m + (1 - L)(\epsilon - \epsilon_m)}\right) \\ k = \sqrt{\frac{\sqrt{\epsilon'^2 + \epsilon''^2} - \epsilon'}{2}}.$$

Uncertainties in the optical constants \rightarrow translation in the Q_{abs} & Q_{sca}

Let's assume that both n & k vary by +10 % or -10 % for silicates a = 0.1 μm

Uncertainties in the optical constants → translation in the SED

Let's assume that both n & k vary by +10 % or -10 % for silicates \rightarrow silicates with a log-normal size distribution

Uncertainties in the models

Choice of the calculation method

Koehler et al. (2011)

- Aggregates of 8 momoners monomer \rightarrow 0.1 and 1 μ m compact sphere
- Three types of calculations
 → DDA = "exact" method
 - \rightarrow Mie for a sphere of equivalent mass
 - → EMT+Mie sphere with same radius of gyration \mathcal{R}_{g} and $\mathcal{P}_{equivalent}$
- Significant differences
 - \rightarrow different grain temperatures
 - \rightarrow shifted SEDs
 - \rightarrow mid-IR silicate features \neq size estimates

Grain size determination

Example: silicate mid-IR features McClure (2009) → observations

- Broader features in dense than diffuse ISM
- Lower constrast with continuum
 - \Rightarrow significant grain growth ?

Example: silicate mid-IR features Min et al. (2016) \rightarrow fractal dimension

 aggregate
 volume equivalent compact sphere
 equivalent porous sphere

amorphous "olivine" monomer radius a₀ = 0.4 µm

Grain size determination

sizes UNDERestimated when using compact spheres sizes OVERestimated when using porous spheres

Many mass estimates based on MBB fits

Mass estimates based on modified blackbody fits for dense ISM regions
 h molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 h young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution

Why is it important to determine n(a)? And not only a_{max}

• Mass estimates based on modified blackbody fits for dense ISM regions

- **b** molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
- 4 young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)
- Assume a dust opacity at a given wavelength
 - **b** pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution
- Classical choice for pb. 1: power-law size distribution
 - 𝖕 Weidenschilling (1997)
 - 4 Natta & Testi (2004)
 - **L** Draine (2006)

Ь...

Influence on the dust opacity in the millimetre

Log-normal size distribution

In all cases: $a_{min} = 0.01 \,\mu\text{m}$, $a_{max} = 10 \,\text{cm}$, $M_{gas}/M_{dust} = 100$ 2/3 silicate + 1/3 amorphous carbon + 50% porosity \rightarrow spherical grains

Influence on the dust opacity in the millimetre

In all cases: $a_{min} = 0.01 \,\mu\text{m}$, $a_{max} = 10 \,\text{cm}$, $M_{gas}/M_{dust} = 100$ 2/3 silicate + 1/3 amorphous carbon + 50% porosity \rightarrow spherical grains

Why is it important to determine the grain composition? And not only their size

Mass estimates based on modified blackbody fits for dense ISM regions
 Is molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)

- 4 young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)
- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - **b** pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution
- Classical choice for pb. 2: fixed κ value with fixed β
 μ any dust model from the litterature

Absorption and scattering efficiencies

Mix 1 ~ compact AMM Mix 1:50 ~ AMM Mix 1:ice ~ compact AMMI

Mix 3 & Mix 3:ice ~ Pollack (1994)

a-Sil \rightarrow THEMIS amorphous silicates a-C \rightarrow THEMIS E_g = 0.1 eV a-C:H \rightarrow THEMIS E_g = 2.5 eV Mix 1 \rightarrow 2/3 aSil + 1/3 a-C Mix 2 \rightarrow 2/3 aSil + 1/3 a-C:H Mix 1:50 \rightarrow porous Mix 1 ~ AMM Mix 1:ice \rightarrow Mix 1 with an ice mantle Mix 3 \rightarrow 20% a-Sil + 80% a-C Mix 3:ice \rightarrow Mix 3 with an ice mantle

Mass absorption coefficients at 1.3 mm

Why is it important to determine the grain composition? And not only their size and composition

Mass estimates based on modified blackbody fits for dense ISM regions
 h molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 h young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - 4 pb. 3: depends on grain structure
 - ▶ pb. 4: depends on temperature distribution
- Classical choice for pb. 3
 Gradient structure
 Gradient

Mass absorption coefficients at 500 µm

Description of the grain surface

→ single grains: increase by ~ 5 % for highly irregular surface → aggregates: increase by ~ 20 % for large contact area

Why is it important to take into accound the radiative transfer ? And not only the dust grain properties

Mass estimates based on modified blackbody fits for dense ISM regions
 h molecular clouds & prestellar cores (e.g. Planck Collaboration 2011 XXII)
 h young stellar objects & protoplanetary discs (e.g. Busquet et al. 2019)

- Assume a dust opacity at a given wavelength
 - ▶ pb. 1: depends on grain size distribution
 - ▶ pb. 2: depends on grain composition
 - ▶ pb. 3: depends on grain structure
 - **b** pb. 4: depends on temperature distribution
- Classical choice for pb. 4
 4 depends on the concerned community

Column density as a function of cloud visual extinction

- Cylindrical clouds with $0.1 \le A_V \le 20$
- Depending on the dataset, mass can be strongly underestimated when using a MBB

- Dust properties vary both in the diffuse and the dense ISM
- Be careful to always know which dataset was used to define a dust model
 → comparison between different dust models does not always make sense
- Uncertainties in the dust models are probably always larger than uncertainties in your data
- Keep in mind what you are neglecting when fitting your data

Many dust models available in the DustEM numerical tool to calculate dust emission & extinction (polarised or not) https://www.ias.u-psud.fr/DUSTEM/