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Disclaimers

/\ Disclaimers

m Wide topic (like others) potentially related to many astrophysical questions

m Despite my efforts, there will be some bias toward dwarf galaxies, low-metdallicity, infrared spectroscopy,
Bayesian statistics, and c1oudy models. .. !

m Not about ISM models per se particularly adapted to a given physical object/process within galaxies (e.g..
PDR, molecular cloud efc. . .; see presentations by B. Godard and P Lesaffre) but about how to model
mulfiple galactic components and processes

m Mostly about models fo match variety of lines & processes in large-scale/integrated observations

m Not about simulations, but about galoxy models that can be compared to individual, specific galaxies
(and as a result also samples of galaxies)



Disclaimers

/\ Disclaimers

m Goal: provide some background and recent advances in order to
m Be aware of biases and existing strategies/codes before choosing the modelling approach
m Have a critical thinking of the results when reading papers or interpreting own results

m Some references/techniques presented here, but far from exhaustive
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m General considerations and motivating questions
m What are we trying fo model?
m Why are nearby galaxies useful
m What physical processes to consider
m What constraints
m Common diagnostics
m Modelling full galaxies, accounting for complexity of ISM and sources
m Using 1D models
m (BREAK?)
m Evidence of mixing/smearing issues
m Using >1D models & n x 1D models
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m Statistical framework
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m Model comparisons / decision tfree
m Concluding remarks
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General considerations and motivating questions

Galaxies are complex objects!

-_,“ﬂl &5

m Various kinds (dwarfs, spirals, Seyfert, mergers etc. . .)

m What the object is when we observe it: result of infegrated history of star-formation, active nuclear
phases, interactions, gas exchange with CGM and IGM. ...

m What we see: snapshot, offen limited number of fracers due to incomplete wavelength coverage,
extinction, signal-to-noise etfc. ..



General considerations and motivating questions

What is the object we are frying to model?

Not always easy to define a galaxy as a well-identified/circumscribed object, we limit ourselves to the object as
it appears in some specific fracers or to sub-components = Hard guess from unresolved observations

Fig.: M82 galactic outflow observed with HST, Spitzer & Chandra.
Fig.: Extended UV & radio disk of M83 observed with GALEX & VLA.



General considerations and motivating questions

Physical processes act on various spatial scales

Observing in different tracers (e.g., Ha, CO, HI. . .) illustrate the complex ISM structure. Not always easy to link
regions with a given excitation source

Fig.: NGC 1385 with ALMA and HST (PHANGS; NRAO).



General considerations and motivating questions

Limited information

Distant galaxies are difficult fo resolve (e.g., even with JWST), galaxy spectra are often spatially- and
spectrally-unresolved

DISANT GALAXY BEHIND SHATS 0723

WEBB SPECTRUM SHOWCASES GALAXY'S COMPOSITION

Fig.: JWST/NIRcam CEERS field. Credit: NASA/STScl/CEERS/TACC/S.
Finkelstein/M. Bagley/Z. Levay; NASA/STScl/CEERS/TACC/S.
Finkelstein/M. Bagley/J. Kartaltepe.
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m Why are nearby galaxies useful



General considerations and motivating questions

Why study nearby galaxies?

External galaxies in general

m Galaxy evolution (SFR, Z, M*, AGNs. ..) (e.g., Kewley+2019)
m Mass-metallicity-SFR relation (e.g., Nakajima+ 2023)
m Looking for metal-free gas in the reionization epoch (e.g.. Vanzella+ 2023)
m (see presentations by D. Dale, K. Sandstrém, B. Groves)

m Multiline modeling also tackles the specific role of ISM in galaxy evolution (e.g., SF)
m e.g., role of Hy in SF, fracers of Hy. .. (e.g.. Madden+ 2020)
m Cosmic evolution of the ISM as an astrophysical object like stars and compact objects
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Why study nearby galaxies?

External galaxies in general

m Galaxy evolution (SFR, Z, M*, AGNs. ..) (e.g., Kewley+2019)
m Mass-metallicity-SFR relation (e.g., Nakajima+ 2023)
m Looking for metal-free gas in the reionization epoch (e.g.. Vanzella+ 2023)
m (see presentations by D. Dale, K. Sandstrém, B. Groves)

m Multiline modeling also tackles the specific role of ISM in galaxy evolution (e.g., SF)
m e.g., role of Hy in SF, fracers of Hy. .. (e.g.. Madden+ 2020)
m Cosmic evolution of the ISM as an astrophysical object like stars and compact objects

Nearby galaxies

m Great opportunity to understand extragalactic ISM in # environments and to design relevant models
m Some galaxies nearby enough to spatially disentangle physical components
m Modelling sum of individual regions vs. full galaxy? Do results change with spatial scale considered?




General considerations and motivating questions

Why study nearby galaxies: tracers!

m Some galaxies nearby enough to detect many fracers arising from different phases/physical processes
m Observed tracers are signatures that reflect the complexity of the galaxy

m Inversely: the complexity of the model physical representation of the galaxy needs to reflect these
signatures (and hopefully those we don’t observe)

m What useful information from limited amount of tracers, do results change with choice of tracers? Should
we consider simple models (despite unrealistic) when signatures are available?
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Fig.: Arp 220 with Spitzer/IRS. Fig.: Arp 220 with Herschel/SPIRE (ESA).



General considerations and motivating questions

Why study nearby galaxies: we have inferesting neighbors

m Some nearby galaxies probe quite different environments compared to MW (Z, SSCs, AGN:s. . .)
m Need some specific prescriptions (e.g., abundance patterns, D/G...)
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Fig.: Metallicity vs. distance for the Dwarf Galaxy Survey (Madden+ 2013; Cormier+ 2019).
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General considerations and motivating questions

Physical processes at work

Typical model parameters to distinguish

m Parameters that describe the matter (gas, dust, composition, spatial distribution. . .)
m Parameters that control the excitation of matter (radiative / mechanical energy)
m Parameters that link both (e.g., ionization parameter U = ionizing photon flux / nc = Q(H)/4ncrr?)




General considerations and motivating questions

Physical processes at work

Typical model parameters to distinguish

m Parameters that describe the matter (gas, dust, composition, spatial distribution. . .)
m Parameters that control the excitation of matter (radiative / mechanical energy)
m Parameters that link both (e.g., ionization parameter U = ionizing photon flux / nc = Q(H)/4ncrr?)

Variety of radiative and mechanical feedback processes

m |onization and heating of the various ISM phases (ionized, neutral atomic, neutral molecular)
Young stars (UV, X-rays), WR, AGNs, X-ray binaries. . .

Cosmic rays

Turbulence and shocks

Magnetic field

Molecule formation/destruction. ..




General considerations and motivating questions

lllustration: 1D model
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General considerations and motivating questions

Some approximations

Assuming local conditions and snapshot

m Difficult to do everything right: turbulence,
magnetic field, fime evolution, chemical

network. . . 100 ﬁ
m Often relying on specific galaxy regions or M/_/\«m ///
galaxies dominated by some process
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m Typical timescale problems: disconnection
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m Non-isotropic emission, light propagation, 06075 06100 06125 06150 06175 06200 06225 06250 06275
heating & cooling timescales. .. fimetem
m Forsimplicity: inferred properties of fransient Fig.: Evolution of AGN feedback luminosity in zoom-in
ObJeCTs reflect condifions seen by T_he matter simulations for a varying SMBH accretion rate (Qiu+ 2020).
when it cools down and not those inferred from

the compact object itself
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General considerations and motivating questions

What constraints?

m Dust essential ingredient of models (Presentation by N. Ysard)
m Dust SED holds much information
m Local physical conditions, Tqust. Maust. Mgas through D/G. .. (e.g.. Galliano+ 2021)

m Difficult fo disentangle ISM phases (e.g., those associated or not with SF), especially in infegrated galaxy
spectra
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General considerations and motivating questions

What constraints?

Line spectroscopy

m Gas fracers may constrain:

m Specific phases:
hydrogen (H+, H?, H,),
metal ionization (e.g.,
(QIN/@lN. . .), density (e.g.,
(Sl @Sy,

m Specific excitation
mechanisms (X-rays,
shocks... e.g., (NeV))

m Sometimes in a single
spectrum

INTERACTING GALAXIES | STEPHAN'S QUINTET

COMPOSITION OF GAS AROUND ACTIVE BLACK HOLE

NIRCam and MIRI Imaging ectroscopy
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General considerations and motivating questions

Absorption spectroscopy

m Absorption spectroscopy is very useful for chemical composition, D/H, depletion patterns, cooling rates,
molecular gas fraction, even CO-dark Hy  (Balashev+ 2017, 2020, 2022)

m But limited to single line of sight (LOS) or LOS averages (for which there is mixing)
m Comparison absorption/emission not straightforward (e.g., Arabsalmani+2023, Wilson+ 2023)
=~ Sf% US presidents in the future: HabWorlds Observatory for LOS mapping

so@@

Gas-rich galaxy

Qso

(Lyman-alpha forest)

m Will focus on emission lines here, it’s complicated enough



Absorption spectroscopy

Gas-rich galaxy
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General considerations and motivating questions

Worth noting. ..

[t’s obvious but... we model what we can see. ..

m Diagnostics are valid only for the regions that are emitting!
m Results may thus be biased by selection effects of emitting components, by extinction
m As much as possible, such effects need to be accounted for a priori or within models
m What are the possible processes (model ingredients) that can contribute to what we see?

m We may limit ourselves to assumptions based on current knowledge, but useful to explore a priori
unexpected processes as well

Isobaric spherical dusty Orion model, MAPPINGS V

CMFGEN Model
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Worth noting. ..

[t's obvious but... we model what we can see. ..
m Diagnostics are valid only for the regions that are emitting!
m Results may thus be biased by selection effects of emitting components, by extinction
m As much as possible, such effects need to be accounted for a priori or within models
m What are the possible processes (model ingredients) that can contribute to what we see?

m We may limit ourselves to assumptions based on current knowledge, but useful to explore a priori
unexpected processes as well

...and emission arises from » Isobaric spherical dusty Orion model, MAPPINGS V

different regions. ..

CMFGEN Model
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Common diagnostics

Typical empirical diagnostics using emission lines

Many signatures potentially available to constrain galactic parameters and physical processes

m Primary ingredients of models may be the ultimate goal (e.g., gas density n, metallicity 2)

m Or other physical parameters can be deduced if the "right" processes have been considered
m either in a relatively trivial way: e.g., SFR, M(H*), AGN fraction. ..
B Or NOt: fesc, M(Hp). ..




Common diagnostics

Typical empirical diagnostics using emission lines

Many signatures potentially available to constrain galactic parameters and physical processes

m Primary ingredients of models may be the ultimate goal (e.g., gas density n, metallicity 2)

m Or other physical parameters can be deduced if the "right" processes have been considered
m either in a relatively trivial way: e.g., SFR, M(H*), AGN fraction. ..
B Or NOt: fesc, M(Hp). ..

Many, many potential diagnostics through spectroscopy of galaxies

m Historically, long-slit or integrated spectroscopy of galaxies used to probe average physical conditions /
chemical composition / dominant excitation sources :

m Gas (electron) density & pressure, ionization parameter from line ratios (e.g., Kewley+ 2019)
m Chemical composition (abundances, metdallicity, depletion patterns) (e.g.. Dopita+ 2016)
m SFR (e.g., Ha, far-IR lines, 24 um...) (e.g.. de Looze+ 2017)
m BPT (Baldwin—Phillips-Terlevich) & AGN fraction (excitation diagram) vs. mass, vs. z
m Coronal lines indicating unambiguous AGN activity (e.g., CLASS survey, Reefe+ 2022)
m UV (~1400-1900A) diagnostics to distinguish SF, AGN, and shocks (e.g., CLASSY survey, Mingozzi+ 2023)




Common diagnostics

lllustrations: electron/gas density diagnostics
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Fig.: Density diagnostics for UV, optical, and IR line ratios (Kewley+ 2019).



lllustrations: excitation mechanisms

log([O111]/Hp)

Common diagnostics
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Common diagnostics

lllustrations: AGN fraction
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Common diagnostics

lllustrations: AGN activity

SDSS SpecOUID MSOUTTEROBATON0 0 = 24420 8 = 3727
— 1
=
tim
10
Yt
) 1
@
N
2w
T R T T T T T
Y
SIS SpecOIID S0
T 3]

S G T o T o
e (1
SIS 5D OGIGIONRZADN 0 =205 5 = 552
. w0 Fo
:u an :%ﬁwvw/\ww
L T e
=15 i
"
o e T T T =0 : E T T
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Common diagnostics

lllustrafions: disentfangling excitafion mechanisms
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Common diagnostics

Spectroscopic diagnostics have a bright future

Wide-field/all-sky optical and near-IR spectroscopic surveys

m SDSS-V 2020-, Euclid 2023-2030, Rubin 2024-2033, Roman 2026-2032, SPHEREx >2025

m Millions of spatially-resolved and integrated spectra, including mostly dwarf galaxies as well as low-surface
brightness galaxies for a wide redshift range
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m Millions of spatially-resolved and integrated spectra, including mostly dwarf galaxies as well as low-surface
brightness galaxies for a wide redshift range

IR spectroscopy

m JWST is observing much fainter IR lines compared to Spitzer = new diagnostics

m Mid/far-IR spectra @z=0 mostly not resolved with Spitzer, Herschel, same for a potential future IR NASA
probe-class mission (waiting for IR space interferometry. . .)




Common diagnostics

Spectroscopic diagnostics have a bright future

Wide-field/all-sky optical and near-IR spectroscopic surveys

m SDSS-V 2020-, Euclid 2023-2030, Rubin 2024-2033, Roman 2026-2032, SPHEREx >2025

m Millions of spatially-resolved and integrated spectra, including mostly dwarf galaxies as well as low-surface
brightness galaxies for a wide redshift range

IR spectroscopy
m JWST is observing much fainter IR lines compared to Spitzer = new diagnostics
m Mid/far-IR spectra @z=0 mostly not resolved with Spitzer, Herschel, same for a potential future IR NASA
probe-class mission (waiting for IR space interferometry. . .)

High-z spectroscopy

m JWST is providing optical diagnostics at very high-z, spatfially unresolved — ELT
m Exciting JWST+ALMA synergies, ALMA high-z galaxies already show multi-phase ISM  (e.g.. Fuimoto+ 2022)
m UV diagnostics shift to NIRspec when optical ones shift to MIRI (CLASSY: Mingozzi+ 2023)




Common diagnostics

Tracers vs. z
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Far-IR diagnostics will remain unvailable at z~0 until potentially PRIMA
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Common diagnostics

Same diagnostics with integral field spectroscopy (IFS)
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Common diagnostics

Narrow-band imaging
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regions of nearby Seyfert 2 galaxies with HST (Ma+ 2021).



Common diagnostics

How tfo make the best of existing and future olbservations

Empirical diagnostics

m We need to understand potential biases, selection effects, and the meaning of average quantities

m We need to design new empirical diagnostics for future observatories with the help of state-of-the-art
models




Common diagnostics

How tfo make the best of existing and future olbservations

Empirical diagnostics

m We need to understand potential biases, selection effects, and the meaning of average quantities

m We need to design new empirical diagnostics for future observatories with the help of state-of-the-art
models

Some complex parameters require full-on models

m Masses (HT, H, Hy. ..)

Tracers of M(Hy): (CIl) 158 um, (O) 63 um, OH, HD. ..

ISM structure (clump distribution, escape fraction of ionizing photons. . .)
Multi-phase observations in general

Ideally at any redshift!
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Modelling full galaxies, accounting for complexity of ISM and sources

Outline
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Modelling full galaxies, accounting for complexity of ISM and sources

Some specific "favorable" cases (still complicated!)

Favorable geometries

m Spatially-resolved individual regions (single HIl region, single molecular cloud)
m Hll galaxies, AGN-dominated galaxies. .. = single ionizing source

(@) ()

Fig.: lonized gas filaments surrounding a young stellar cluster in the dwarf SF galaxy 1Zw18, very favorable geometry for models!
(Cannon+ 2004).

m 1D model with spherical geometry or full 3D model can be envisioned (e.g., Cloudy 3D, M%)




Modelling full galaxies, accounting for complexity of ISM and sources

Messenger Interface Monte Carlo MAPPINGS V (M3; Jin+ 2022)

a)

a) oy,

a)

Fig.: Modeling nebulae with arbitrary 3D geometries (Jin+ 2022).



Modelling full galaxies, accounting for complexity of ISM and sources

Cloudy 3D/pyCloudy (Morisset+2013) dnd PyCROSS (Fitzgerald+
2020)
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Fig.: Pseudo-3D models: set of n 1D models following angular laws, populating emissivity cube and projecting (Morisset+ 2013; PN
application in Gesicki+ 2016).



Using single 1D models

Modeling full galaxies with single 1D models: some codes

1D (or 2D) line and dust RT models

B RADEX (van der Tak+ 2007), RADMC (Dullemond and Dominik 2004). . .

m With LTE or simple non-LTE approximations (such as escape probability or Large velocity gradient - LVG
methods)

m No photoionization and no chemistry
m Potentially spherically symmetric
m = Constraints on physical conditions such as N, n, and T through generation of synthetic spectra & grids




Using single 1D models

Modeling full galaxies with single 1D models: some codes

1D (or 2D) line and dust RT models

B RADEX (van der Tak+ 2007), RADMC (Dullemond and Dominik 2004). . .

m With LTE or simple non-LTE approximations (such as escape probability or Large velocity gradient - LVG
methods)

m No photoionization and no chemistry
m Potentially spherically symmetric
m = Constraints on physical conditions such as N, n, and T through generation of synthetic spectra & grids

1D photoionization and photochemistry steady-state models

B Cloudy (Ferland+2017), MAPPINGS V (Binette+ 1985, Sutherland+. 2018), Meudon PDR (Le Petit+2006, Bron+ 2016). ..
m = long torun! (e.g., OTF MCMC is difficult)
m Main focus in this presentation




Using single 1D models

Modeling full galaxies with single 1D models: applications

Applications

m Useful to link observables to "average" physical conditions

m Physical conditions may be interesting by themselves (n, U...) but we’re also eventually interested in other
resulfing parameters (mass of gas, SFR, fesc. . .)

m Some codes provide plenty of interesting oufput quantities from which we can examine things like the
formation pathways of Hy, X-ray photoionization etc. ..

m Single 1D: assuming co-spatial excitation sources (all stellar clusters, potentially AGN - i.e., with coincident
mixing)




Using single 1D models

Prescriptions for photoionization/photodissociation codes

Required prescriptions for models
m Abundance patterns, D/G, dust properties. ..
m Equation of state

m Constant pressure (e.g., Orion, but also for diffuse and franslucent clouds; van Dishoeck and Black 1986)

m High densities quickly reached and not well adapted to average galaxy properties. Some alternatives:
density scaling with N(H), magnetic field pressure term, pseudo constant pressure. ..

m Shocks: complicated, can use a mechanical heating term (e.g., from SNe rate) flat or not with depth
]

CR: nearby starbursts and ULIRGs all suggest MW-like range values 10~ 19:=13 s=1 with higher values in nuclei
and regions with infense SF (Indriolo+ 2012, 2018; Oka+ 2019; van der Tak+ 2016; Holdship+ 2022; Gonzalez-Alfonso+ 2018)

Heavy dependence on stellar atmospheres: BPASS, new versions to test each time. ..

Extremely low Z: litfle knowledge on dust opacity curves, CR, stellar atmospheres




Using single 1D models

Examples: machine learning (ML) fechniques

m Supervised ML technique with caME (GAlaxy Machine learning for Emission lines; Ucci+ 2017)

input features labels
e S — A
| 1 | E [ [

constant density: n
metallcity: 2

m Library of synthetic spectra assuming very simple, single, 1D models (spherical geometry)
m Z, U, N(H) predictions from an arbitrary suite of emission lines
|
|

Great performance for a large number of fracers (better than Bayesian techniques in that regard)
Possible application to IFS observations (Ucci+ 2019)




Using single 1D models

Examples: probablistic methods

Going Bayesian with BEAGLE (BayEsian Analysis of GalLaxy sEds;
Chevallard and Charlot 2016)

m Using Gutkin+ (2016) models that combine stellar population
synthesis and photoionization codes to describe an ensemble
of Hll regions and diffuse gas ionized by young stars

m Effective Hil region: all HIl regions and DIG ionized by a single
stellar generation with a set of effective parameters
m Strong - though classic — assumption
m Collection of isolated HIl regions currently being
investigated

m Geometry accounted for by dust aftenuation for
stellar+nebular emission (inclination, disk, bulge)

m Powerful algorithm including instrumental effects

m Using nested sampling techniques to account for multi-modal
posterior distributions




Using single 1D models

Examples: probablistic methods

Going Bayesian with the Code Investigating GALaxy

Emission (CIGALE; Burgarella+ 2005)

m Relying on energy balance principle (absorption
by dust in UV-optical vs. re-emission in IR)

m Using geometry templates for dust attenuation X_CTZ:'L'E_ AGN— galaxy
30 "
m Detailed treatment of X-ray sources: x-CIGALE 1 Ji%t(;ggggifgl 42485
(Yang+ 2022) = 10 2=0.62, x? =1.41
= DAaogy = —0.16
o 1071
m Nebular emission freated (Boquien+2019) to
decontaminate broadband photometry 107 ;/|
m Line predictions for HIl region + PDR under - e
development g, t
v W . .
. g AT
m = Hands-on project @GISM2 | T T U

A [nm, observed-frame]



Using single 1D models

Limitations of single 1D models

m Like all static nD models, cannot capture the complex and dynamic structure of the ISM along with all of
the relevant, tfime-varying star formation and feedback

m 1D models assume co-spatial sources / effective galactic-wide parameters

Like all parameterized models: wide range of theoretically allowed parameters

m Distribution/geometry of gas is difficult fo implement (e.g., Hll region, PDR, molecular cloud)



Using single 1D models

Limitations of single 1D models

Molecular Cloud undergeing
collapse and fragmentation

Massive stars form
early on, driving an
ionization frort and shock
into surrounding molecular
gas

Shock-compressed Massive stars
" e Compact HIl
Triggered star et

formation
\#/ lonization front Isolated low-mass
/ Stars

\ Uncavered groups ’ v

Hil Region
* leror .

The expanding ionization front moves
through surrounding gas, first triggering
collapse of molecular cores, then overrunning
them, leaving young stars in the interior of
the H || region

03 00

Fig.: Left: evolution of HIl regions (Hester and Desch
2005). Right: Escaping photons channels through
(Olll) with MUSE (Herenz+ 2020).



Using single 1D models

Possible tweaks to single 1D model approaches

m Accounting for different (spherical) geometries
m Accounting for holes and/or matter-bounded (aka density-bounded) models

m Accounting for time evolution



Using single 1D models

Assumption of geometry

2.0 T T T 2.0 T T
Filled Thin
1.5 ~ 1.5k -
" spheres F shells

— Lo- 4 - 4
g =l
S osk 4 = 4
=) o4 =4
g ; g
< oof / 4 = 1

—0,5K 4  -osk 4

— 1 1 1 — 1 1 1

Lo -2 -1 1] 10 -2 -1 1}

log [ArVITAAN] log [ArVI A

Fig.: Line ratio diagnostic line assuming different spherical
geometries (Stasinska+ 2015).

m Playing with geometry not enough to reproduce low values of (Ol)/(Olll) in LyC-leaking galaxies or
(CI/ (Ol in high-z galaxies



Using single 1D models

Accounting for holes and/or matter-bounded models

BPT-like diagnostics & metallicity diagnostics

m Matter-bounded nebula produce the "normal" amount of (Olll) close to the stars, but some H RL-emitting
regions are missing further out = (Oll)/HB

m Matter-bounded nebula lack low-ionization lines (e.g.. (NII), (SI)) emitting regions

T T T T T
Isobaric spherical dusty Orion model, MAPPINGS V'
» 1 Direct star light
N b YA a) with LyC b) Lt S, Strémgren radius
s - /. %
E CMFGEN Model @ e
g T + /
= L:1.808% 10° Ly oy i
§ 05 logg:41 4 A 1
H Mg 3.565 X 107 Myear! 3
z Vi 3325km ™! . r
20 Star light and R utite Star light with
_______ ammnt b nebular emission, LyC and nebular
------------------------ B . butno LyC emission
- ; ; ; N 7 lonization-bounded nebula with holes Density-bounded nebula
02 04 06 08 10

Nebula radius



Using single 1D models

Accounting for holes and/or matter-bounded models

BPT-like diagnostics & metallicity diagnostics

m Matter-bounded nebula produce the "normal" amount of (Olll) close to the stars, but some H RL-emitting
regions are missing further out = (Oll)/HB

m Matter-bounded nebula lack low-ionization lines (e.g.. (NII), (SI)) emitting regions

T T T
Isobaric spherical dusty Orion model, MAPPINGS V

Direct star light
a) LL\/\/L' with LyC b) LT &mgven radius

<
s
E CMFGEN Model
g Tt 39K )
E 1:1.808x 10°Lg e |
2 05 logg:41 B +4¥
H Mg 3.565 X 107 Myear!
s Vir:3.325km s . "
20 Star light and Star light with
____________ " nebular emission, LyC and nebular
------------------------ butno LyC emission
N 7 lonization-bounded nebula with holes Density-bounded nebula

02 04 06 08 10
Nebula radius

Escape fraction of ionizing photons

m As aresult, weak low-ionization lines may be used to identify potential leakers (e.g., Wang+ 2020, 2021,
Zackrisson+2013, Ramambason+ 2020, 2022)




Using single 1D models

Accounting for matter-bounded models

Once upon a time

m Long-standing high Te((Olll)) problem in dwarf galaxy 1Zw18: extra heating due to stellar winds, SNe,
shocks?

m T constrained by (Ol A4363A/((Ol)A5007A+(OlINA4959A) and depends on local density
m Density from (Sll) is not representative of the ionized nebula

Isobaric spherical dusty Orion model, MAPPINGS V/

CF=26%
Hil + Hi region

2
Matter-bounded
CF=30% [ loggar
Hil region Me: 3565 107 Myear !
Ver:3325km s

)
Matter-bounded "veil”
CF = 449%

i %8 T i Hilregion Y

P g 5 i High photon escape fraction 2

e , , i . L
T 213pc 128pc 135pc 186pc

Molecular clumps 02 04 06 08 10
235pc. CESI

B Péquignot (2008): radiation-bounded shells embedded in a matter-bounded medium produces a lower
mean density and higher Te = photoionization by (non-population lll) hot stars is enough!

m Infroducing "topological models', i.e., combination of 1D models




Using single 1D models

Accounting for time evolution of single HIl region + PDR

ARequiring coupling with time-dependent models

1D spherical with time-evolution

B WARPFIELD-EMP (Pellegrini+2020) couples the 1D stellar feedback code WARPFIELD with the cloudy Hl
region/PDR code and the pOLARIS line and continuum RT code, in order to make detailed predictions for
the time-dependent emission arising from the Hll region and PDR surrounding an evolving star cluster

Phase II 15
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Phase I e
Energy + Momentum Driven 1.0 R
. ) 0.5 Optically Thin/ . »
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\ . High SFE, Low Density.
[ = 00
\ @
| z
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Emission 3 &“& & 5
C nat 210 NS > &
)
& “’ﬁ e
RSN £ &
5 &
-15 & & f
& &€
T onizng Stelar-Radiation -2.0
Gas density 2 51 ionizing Stellar-
wedF by w,_. Ony Shel “255 —2.0 -15 -1.0 0.0 0.5
" PIESSUe ™ Shell emission Emission log(INIHe)




Break

Break

m Questions
m Take a good breath

B (woke up?)




Mixing issues

Outline

m General considerations and motivating questions
m What are we tfrying to model?
m Why are nearby galaxies useful
m What physical processes to consider
m What constraints
m Common diagnostics
m Modelling full galaxies, accounting for complexity of ISM and sources
m Using 1D models
m Evidence of mixing/smearing issues



Mixing issues
Mixing

m Eventual goal: build a comprehensive model able to explain the multi-phase signatures and able to
account for complex ISM/source geometries

m Unresolved spectroscopy is often inevitable (e.g., high-z galaxies, some specific wavelength domains)

m Galaxies in general do include:

m A collection of Hll regions following some luminosity function, some leaking ionizing photons — possibly
super-stellar clusters as well = Q, U mixing

m A distribution of gas following some density PDF related to turbulence, self-gravitation, and rotational
support (e.g., Khullar+ 2021) = n, P mixing (biases depend on critical densities)

m A collection of molecular clouds, some associated with recent SF
m WR stars, high-mass X-ray binaries and possibly AGN




Mixing issues

Mixing: distributions
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Fig.: Density PDF from simulations with 3 regimes associated with Fig.: HIl region luminosity function in PHANGS-MUSE galaxies

turbulence, self-gravitation, and disc/rotation (Khullar+ 2021). (Santoro+ 2022).



Mixing issues

Mixing: effective HIl region vs. collection of HIl regions

m Stellar population radiation field (BPASS), potential X-ray source, fixing all but U and SED shape (age)
m (Don’t read too much into this, depends a lot on how models are designed)

o . oo’.....'.o:go
. ° o
ol e

0.0

[O/HB
[OI/HB
|

.

. -2.0 1x10°L, cluster
@ @ =2.079 o 1x10%; cluster 100 X 107L  clusters.
e 100 x107L clusters ° -2.5 :
25 25 -20 -15 -10
@ @ 25 -20 -15 -10 [Ol/Ha
@ [O1)/Ha

Fig.: Absorption of X-rays doesn’t follow the same
"rules" as UV photons. Line ratios cannot be
recovered even choosing a different U value, this is a
geometry effect.

Fig.: Globally high-density regime, same volume. But
same parameters lead to different line fluxes for high
U values (thinnest nebulae; dust absorption).



Mixing issues
Mixing: effective HIl region vs. collection of HIl regions

m PDR diagnostics (no X-ray source)

31, 1k 10°L, cluster ?
o 100 x107L, clusters }
21 .
Ld
o
19 s
= 0 2 N
3 R .
= )
=-17 9 8
S od
24 - .
L4 °
-3 8
°®
44 o
QO :
20 -15 -10 -05 00

[onncil

Fig.: The effective region model would need a much
lower density to match better with collection of
models.



Mixing: (non-)coincident AGN/SF mixing

Open; coincident mixing Closed; coincident mixing
A::::::::“ H HO " b — b
**** - I .
Open; non-coincident mixing Closed; non-coincident mixing

Fig.: Different geometries for AGN and SF excitation (Richardson+ 2022).



Mixing issues

Evidence of inhomogeneifies

m |FS observations reveal the mixing, AGN confribution, metallicity variations. .. within galaxies. This should be

kept in mind when modelling a spatially-unresolved galaxy
B Kewley+ (2019): "For example, the global metallicity of a high-redshift galaxy may not be the true mean
metallicity but may be weighted toward specific HIl regions with certain sets of properties.”

KK04.R23
29
= ‘

.l
0 05 10 15 20

R/Re

Fig.: Metallicity gradient and dispersion in SAMI galaxies (SF
face-on spirals; Poetrodjojo+ 2018).



Mixing issues

Biases due to smearing and selection effects

IFS results

m M* can be severely underestimated (factors up to

5) using the integrated SED due to the bias of ° ¢ e, . %0 2.25
young stars dominating the SED  (Sorba and Sawicki 10k me - 0- - € "p'i S REEREE A
2015,2018) . | T8 T s §38.- 5508 '
4 o @ -
m See also Galliano+ (2011) for dust mass estimates Zos ° o:oo . "8"9"9.;3:00: L7
vs. spatial resolution in LMC : N 150,
é o6 o & “‘g 1.25 g
K o =
m Detailed study of biases due to beam smearing 3. Typlcal 2.0 ellipse ° . b 1.00
for spectroscopic diagnostics still limited (e.g., Z. : Tyaical 1 ellipse oWt s
SFR, M(H*)...) . o
- 1 0.50
m Note that a single 1D component always imply ¢
some kind of bias for a single pixel in IFS o 025

observations (e.g., SAMI, MUSE. . .) = Longitudinal
mixing and spatial disconnection between
excitation source and matter that may lie in
different pixels

Fig.: Missing mass for high sSFR galaxies (Sorba and Sawicki 2018)

Spectroscopic Redshifts

0-712.13711.5711.0710.5710.0 -9.5 -9.0 -85 -8.0 -7.5

log(Unresolved sSFR [y '])



Mixing issues

Beam smearing and LOS mixing in IFS obbservations

0% 50% 100%
cror = PDR proportion (%)

37

Naked Matter-bounded Full model Full model + Isolated PDR
Hil region PDR additionnal

Fig.: Line of sight mixing (Lambert-Huyghe+ 2022).




Mixing issues

Outline

m General considerations and motivating questions
m What are we frying to model?
m Why are nearby galaxies useful
m What physical processes to consider
m What constraints
m Common diagnostics
m Modelling full galaxies, accounting for complexity of ISM and sources
m Using 1D models
m Evidence of mixing/smearing issues
m Using >1D models & n x 1D models



Beyond single 1D models

Beyond single 1D models: opfions (and difficulfies)

m Combination of 1D models
m Pseudo 3D
m Combination of independent 1D models representing galaxy components

m Full 3D RT

m Simulations

(Focus on nebular emission, for panchromatic SED models, see, e.g., Conroy+ 2013, Baes+ 2019)



Beyond single 1D models

Simulations

Simulations

m Include dynamical effects, a realistic/consistent ISM structure
and distribution of sources

m Chemistry is numerically expensive (most simulations do not
include any form of non-equilibriumn metal chemistry)

m Need to rely on subgrid models to account for the physics
on sub-pc scales (including resolving the ionization fronts)

Post-processing: feed numerical simulations to
photoionization codes or chemical networks in order to
measure the metal ionization states and their relevant
emission after the simulation has been run (e.g., Jonsson+ 2010,
Melekh+ 2015, Vandenbroucke and Wood 2019)

m See Hirschmann+ (2017, 2019, 2022,2023) for

post-processing with cloudy (photoionization) and MAPPINGS
v (fast radiative shocks)




Beyond single 1D models

Simulations with large chemical networks

Simulations

m Solving a large chemical network within a 3D simulation, e.g.,
combination of thermochemical network PRISM with
on-the-fly radiation hydrodynamics code RAMSES-RTZ

m Full 3D cosmological or isolated galaxy simulations (e.g.,
Katz+ 2022)

m Study of cooling and heating processes in the ISM, synthetical
observations. ..

m Prescriptions usually limited to general properties rather than
individual objects or even samples, exploration of large
regions of parameter space remains difficult

m |deally: grids of 1000s-100,000s simulations with varied
parameters to produce synthetic library of spectra fo
compare to observations! an et entie iabs in the winter...»

Fig.: SMC-like simulated galaxy, N* column density
(Katz+ 2022).



Beyond single 1D models

Simulations with large chemical networks

Simulations

m Very useful fo test "unmixing" techniques or spatial-resolution
biases!

m Known distributions of density, metallicity. . .

m We would like to reproduce the average parameters and
their dispersion

| AComporison of intrinsic parameter average values or
variations in simulations vs. parameters derived from emitting
regions is not trivial

m Not all cells in simulations lead to emitting species

m Biases due to instfrumental uncertainties Fig.: SMC-like simulated galaxy,
m What internal distributions should be used in models? ) N*columndensity(Katz + 2022).




Beyond single 1D models

Full 3D RT (w/o photoionization)

MIPS 24 um

Full 3D RT
m Adapted o objects with known (potentially complex) geometries

m 3D Monte-Carlo RT codes can handle complex geometries and
density structures
B €.g.: RADMC-3D (Dullemond+ 2012), SKIRT (Baes+ 2003, 2011).
produce synthetic images/spectra from an arbitrary distribution of
stars, dust, and gas density distribution from 1- o 3-D

m Applications often limited to stellar populations and dust-heating
processes (e.g., de Looze+ 2014)

m Future is fully self-consistent 3D RT models, which will allow detailed
dust and gas distributions to be embedded within the photoionized
nebula with arbitrary T, n, and dust distributions

m Promising avenues with SKIRT+Cloudy (Romero+ 2023)

v

PACS 160 um

SPIRE 350 um

Observation Model

Fig.: Comparison simulated/observed images
for M51 (Nersesian+ 2020).



Beyond single 1D models

Full 3D RT (w/ photoionization)

m Full 3D photoionization is great but expensive (MOCASSIN, TORUS-3DPDR,
SOC/LOC, RASCAS, ART2, M3, ..)

m Need to know the distribution of matter and sources (geometry is not a
free parameter)

m Particularly adapted to PNe, bipolar HIl regions, fractal Hil regions. . .




Beyond single 1D models

Full 3D RT (w/ photoionization)

m Full 3D photoionization is great but expensive (MOCASSIN, TORUS-3DPDR,
SOC/LOC, RASCAS, ART2, M3, ..)

m Need to know the distribution of matter and sources (geometry is not a
free parameter)

m Particularly adapted to PNe, bipolar HIl regions, fractal Hil regions. . .

Overall pros and cons of 3D methods

m Great to treat the fransfer and deal with projection effects
m Great to test the impact of geometry or model specific objects
m So far impractical to explore large parameter space

m Still cannot capture the complex and dynamic structure of the ISM along with all of the relevant,
time-varying star formation and feedback




Beyond single 1D models

Back to 1D: combination of independent 1D models

Principle

m Infegrated spectrum of a galaxy ~ sum of many emitting stars+ISM components that are correlated or that
may even share similar properties (not a new idea)

Example: ensemble averages of aging HIl regions (Dopita+ 2006; Groves+ 2008)

m Removing the (single) age parameter

m Continuous formation of stellar clusters (each cluster forming stars coevally) = Evolutionary frack of an Hll
region with given parameter sets

m Flux-averaged spectra along this track




Beyond single 1D models

Combination of independent 1D models

Locally optimally emitting cloud (LOC; Ferguson+ 1997; Richardson+ 2016)

m Assumes that the cumulative observed emission from each individual emission-line galaxy is the result of
selection effects stemming from various emission lines optimally emitted by a large number of gas clouds
spanning a large range in physical conditions

m Fully parameterized, useful for non trivial components like AGNs
m Potentially >100s of models

' —170unQ
Line = [ [ Dorseeap 0o cp e, P = USUR .
—

n



Beyond single 1D models

Combination of independent 1D models

Locally optimally emitting cloud (LOC:; Ferguson+ 1997; Richardson+ 2016)

m Assumes that the cumulative observed emission from each individual emission-line galaxy is the result of
selection effects stemming from various emission lines optimally emitted by a large number of gas clouds
spanning a large range in physical conditions

m Fully parameterized, useful for non trivial components like AGNs
m Potentially >100s of models

— [ o
Liine =/.../L(pl,...,pn)'w(p,,.4.,pn)dp,v...dpn 17[} =U%Un%n...
—

n

General model "architecture": topological models

m Linear combination of independent 1D models
m 'Topology" vs. geometry: the exact way in which the components are distributed doesn’t matter
m Many models (grids) but less computationally intensive than simulations or full 3D models




Beyond single 1D models

Single effective representative cluster, single ISM component




Beyond single 1D models

Single effective representative cluster, two ISM components

High U
High ny

Low U
Low Ny

Each component is
described by a single
value, this doesn’t
sound very redlistic. ..




Beyond single 1D models

Single effective representative cluster, U distribution

Lower bound U
Upper bound U

A
°
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Beyond single 1D models

U & age distribution

Young
Cluster

Older
Cluster

Lower bound Age
Upper bound Age




Beyond single 1D models

U & age & n distribution

Lower bound n

w| Upper bound n

n

1.0 15 2.0 25 EX
log n




Beyond single 1D models

U & age & n & Z distribution

(Actual spatial distribution is not important)

Lower bound Z
Upper bound Z

-08 -0.6 -04 -02 00 0.2
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Beyond single 1D models

Accounting for physical depth of clouds
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Beyond single 1D models

Accounting for physical depth of clouds
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Beyond single 1D models

Accounting for physical depth of clouds
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Beyond single 1D models

Accounting for physical depth of clouds
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Beyond single 1D models

Accounting for physical depth of clouds
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Beyond single 1D models

Accounting for physical depth of clouds




Beyond single 1D models

[terations of (simple) combinations

1Zw18
(Lebouteiller+ 2017)

Haro 11 IC10
(Cormier+ 2012) (Polles 2017; Polles+ 2019)

0-0-0Q 000

3 & 4-sector radiation- or matter-bounded

Hil region + PDR CF scaled a posterior Difuse onized gas Radkation-bounded or matter-bounded Shoci o
SMCI/LMC SF regions DGS
(Lambert-Huyghe+ 2022) (Cormier+ 2019)

0000, -0

‘Combination of HIl region + PDR from single radiation-bounded sector 2 radiation-bounded sectors, Only dense Hll region has a PDR CFs from grid



Beyond single 1D models

Outline

B General considerations and motivating questions
m What are we trying fo model?
m Why are nearby galaxies useful
m What physical processes to consider
m What constraints
m Common diagnostics
m Modelling full galaxies, accounting for complexity of ISM and sources
m Using 1D models
m Evidence of mixing/smearing issues
m Using >1D models & n x 1D models
m Some results and ongoing works



Beyond single 1D models

Combinations of 1D models for nearby galaxies: flash results

Matching suite of lines

m Reproducing Te((Oll)) in [Zw18 (Péquignot 2008)
m Matching many IR and optical lines (PDR+HII region) at once in an unresolved galaxy (Cormier+ 2012)

PDR and CO-dark gas
m PDR "covering factor" \, when Z \, (Cormier+ 2019)
m CO-dark gas fraction is a function of Z and geometry (Ramambason+ in prep.)
m Origin of (ClI) in the neutral atomic gas and influence of X-ray sources in ISM heating (Lebouteiller+ 2017)
m Evidence of wide range of PDR fractions in spatially-resolved SF regions (L.ambert-Huyghe+ 2022)

Escape fraction of ionizing photons

m Fraction of escaping photons \, when integrating larger spatial scales (Polles+ 2017, 2019)
m Fraction of escaping photons ~when Z N\, (Ramambason+ 2022)




Beyond single 1D models

lllustration of ongoing works: LOC models

m (Testing phase!) Comparing (single) parameter values from single 1D models to average LOC parameters:
single 1D model captures well the average U and n, not so good for age (i.e., stellar population SED
shape) and Z
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Beyond single 1D models

lllustrafion of ongoing works: recovering internal variations

m (Testing phase!) Each IFS pixel is a distribution, can we recover the internal variations from the integrated
map?
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Beyond single 1D models

Applications to high-z galaxies
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Fig.: Considering Hll region + PDR components in high-z galaxies to
explain high (Olll)/(Cll) observed with ALMA (Harikane+ 2020).
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Fig.: Considering different dust distributions for EOR galaxies
(Zackrisson+ 2013).



Beyond single 1D models

Caveats of combination of 1D models

n AS’riII 1D models: static, components don’t talk to each other

n AProjec’rion effects are difficult fo handle
m Befter adapted to optically thin fracers and dust-poor ISM

n AS’riII parameterized models: potentially too wide allowed parameter space

m Considered models combinations may be matching observations but may lead to parameter
distributions that are unrealistic or not motivated/confirmed by self-consistent simulations

m Unless priors are explicitly infroduced
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B General considerations and motivating questions
m What are we trying to model?
m Why are nearby galaxies useful
m What physical processes to consider
m What constraints
m Common diagnostics
m Modelling full galaxies, accounting for complexity of ISM and sources
m Using 1D models
m Evidence of mixing/smearing issues
m Using >1D models & n x 1D models
m Some results and ongoing works
m Statistical framework
m Samplers
m Model comparisons / decision tfree
m Concluding remarks
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Statistical framework

Statistical framework

m How do we handle this many tracers and/or such complex combinations?

Deterministic methods

m Focus on selection of "best-fitting" parameters rather than on the uncertainties associated with these
parameters, e.g., x2 method

m Limited capabilities with interpolation, outliers, upper limits, more complex topology, confidence
infervals, use of priors. ..
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Statistical framework

m How do we handle this many tracers and/or such complex combinations?

Deterministic methods

m Focus on selection of "best-fitting" parameters rather than on the uncertainties associated with these
parameters, e.g., x2 method

m Limited capabilities with interpolation, outliers, upper limits, more complex topology, confidence
infervals, use of priors. ..

Probabilistic methods

m Bayesian inference with state-of-the-art posterior sampling techniques, such as the Markov Chain
Monte-Carlo (MCMC) has become a standard practice

m Probabilistic approach also infroduces priors, nuisance variables, and may allow a finer scan of the
parameter space




Statistical framework

Bayesian inference

m Single models too long to run at each iteration = fine grid and/or interpolation techniques

Inference on grids including pre-computed geometry

B NebulaBayes (Thomas+ 2016) (some caveats with line normalization hypothesis)
m Agnostic to model grid used so desired topology can be pre-computed/tabulated in grid
m 'Brute force" Bayesian likelihood calculations

B MULTIGRIS (Lebouteiller+2022): same as NebulaBayes but with a sampler

m + RVs controlling combination of models and any nuisance variables (e.g., extinction, systematic
uncertainties. . .)




Statistical framework

Bayesian inference

m Single models too long to run at each iteration = fine grid and/or interpolation techniques

Inference on grids including pre-computed geometry

B NebulaBayes (Thomas+ 2016) (some caveats with line normalization hypothesis)
m Agnostic to model grid used so desired topology can be pre-computed/tabulated in grid
m 'Brute force" Bayesian likelihood calculations

B MULTIGRIS (Lebouteiller+2022): same as NebulaBayes but with a sampler

m + RVs controlling combination of models and any nuisance variables (e.g., extinction, systematic
uncertainties. . .)

Random walkers (i.e., one or a few "chains")

m High dimensionality is common = slow parameter space exploration
m ISM model grids are highly multi-modal, worse if combination of models. . .
m Can get stuck in local likelihood maximum
m Stochasticity: different solutions from different starting points
m Difficult fo probe the entire parameter space (= difficult to compute marginal likelihood)




Statistical framework

General principle

m p(6]0, M) = BCIZAICEIM o p(O)0, M)p(0|M)

i~ __ likelihood x prior P
m posterior = “margialzafion (for a given model)

Multi-modal posteriors

m Nested sampling techniques (e.g.. BEAGLE)

m Sequential Monte-Carlo (e.g., MULTIGRIS): Markov kernels used to
rejuvenate particle using IMH or HMC kernels

m Genetic algorithms. ..
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General principle

m p(6]0, M) = BCIZAICEIM o p(O)0, M)p(0|M)

i~ __ likelihood x prior P
m posterior = “margialzafion (for a given model)

Multi-modal posteriors

m Nested sampling techniques (e.g.. BEAGLE)

m Sequential Monte-Carlo (e.g., MULTIGRIS): Markov kernels used to
rejuvenate particle using IMH or HMC kernels

m Genetic algorithms. ..

Example: particle filtering techniques (e.g., SMC)
m Tempered likelihood (Ching and Chen 2007, Mison+ 2013)

m Parallel runs varying the "temperature" of (many) particles through the
index 3

m p(6|0, M)z x p(0|0, M) p(6|M)




Statistical framework

lllustration (SMC)

Prior B-0

Setof N sampies S(Bg=0)

New set of N samples S(W)

m Makes it possible to evaluate the entire

a ¥ ¥ v v A parameter space if well sampled
e m Marginal likelihood can be estimated
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Statistical framework

lllustrations (see accompanying .odp file)

m No U-turn Sampler (Hamilfonian MC sampler)
m SMC



Statistical framework

Hierarchical method

Sample of galaxies

Sample of galaxy regions

Pixels in IFS observations = spatial regularization / smoothing
Still very recent for spectroscopic diagnostics




Statistical framework

The power of stafistics

m We usually don’t know the geometry a priori: assumed geometry and infer parameters

m Usually assuming simple geometries when few tfracers are available, and increase complexity with
additional fracers ("Don’t use more parameters than tracers”)

m BUT more complex (i.e., redlistic) geometries can still be explored/evaluated!
m [s it betfter to knowingly use an unrealistic geometry and infer inaccurate (possibly precise)
measurements? Or use a realistic geometry and infer an accurate (possibly imprecise) measurement?

m My 2 cents: accept imprecision due o unknown/unconstrained geometry and in the future rely on
hierarchical methods to gain as much precision as possible

\\\ O"
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Statistical framework

Model comparison: evaluating the hypotheses

Roues = pM,[0)
- =
VT MI0)

P(OIMlp(My)
—
p(OIM)p(My)

Rbaycs &

MARGINAL LIKELIHOOD

m Marginal likelihood: hypothesis testing. i.e., how likely the prior space may generate the data
m p(O|M) = [, p(O|0, M)p(0|M)d6O
m (integration on the whole parameter space of likelihoods x priors on 6)

m Prior probability of the model: how likely the model is, independently on the data
m i.e., how likely the architecture, choice of parameters, is
m Quite arbitrary! For instance: a single 1D model has a "low" p(M)



Statistical framework

Model decision tree

l

B(M) << p(M) >>
Comparatively less Metrics: a priori probability of model p(M) Comparatively more
realistic representations Choose a set of parameters and distributions realistic representations
e p—— representing well anough the ebject studied
predictions for simple (independently on data) :
oz ) Compared fo other model architectures
| }
ML << ML >> Metrics: marginal likelihood e e
Choose among realistic models the simplest
Sy e e ‘ enough given th ones whose prior space is most iikely to Comparatively too complex given the Complex enough given the data
ey e e e e T IEeTE data (but may be fine If more data
&com: bie space likel rate the (hypothesis testing; given the data) become available) prior space likely to generate the data
OR Compared fo other model architectures
prior space not likely to generate i prior space not likely to generate the
data

v
PPP << 0.5 Metrics: PPP. PPP <<0.5 PPP <<0.5 PPP>=0.5
Choose the models that capture well the data
Underii Good fit f (absolute wrt 0.5) Underfit Good fitf overfit Underfit Good fitJ overfit

Performing weil rchite
but probabiy too ot perfor
many RVs. May Il (prot
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data is available efin
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Statistical framework

Implications

m A simple architecture (e.g., 2 components sharing the same radiation field) may produce great metrics,
even marginal likelihood

m But single parameter values are fine tuned o match observations, it doesn’t make it realistic

m LOC models include thousands of models but linked through very few parameters
m We may loose in some metrics because the architecture is less flexible than n-component models
m But we gain in realism (i.e., prior probability of the model)
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Concluding remarks

Some prospective

Future modeling

m Short term: bridge the gap between models with complex geometries and simulations

m Stafic nD models can be combined within complex, parameterized geometries but are not fully
self-consistent = Needs calibration (IFS, simulations. . .)

m Simulations rapidly improve the chemistry network, photoionization tfreatment etc. ..
m Long term: probabilistic methods applied to big data

m Run dynamic simulations on the spot with specific parameters and/or make grids of simulations = ML
techniques

m Use full static 3D models with parameterized geometries / ingredients
m Dust and gas, orientation of models. ..
m Multi-wavelength resolved observations are essential




End of presentation



Extras

Modelling a full galaxy and its suite of lines

Geometry

m |t may be apparently simpler to consider a single spectrum but we have to consider that the spectrum is
the result of strong selection effects (a simple spectrum doesn’t imply a simple model)

m Sources: is the galaxy dominated by a single or a couple of excitation mechanisms (e.g.. AGN, Hll
galaxies) or by a "standard" distribution of Hll regions?

m ISM: physical conditions are highly inhomogeneous but follow some physically-motivated distributions
m X-rays and/or PDRs complicate everything and require complex geometries




Extras

Modelling a full galaxy and its suite of lines

m |t may be apparently simpler to consider a single spectrum but we have to consider that the spectrum is
the result of strong selection effects (a simple spectrum doesn’t imply a simple model)

m Sources: is the galaxy dominated by a single or a couple of excitation mechanisms (e.g.. AGN, Hll
galaxies) or by a "standard" distribution of Hll regions?

m ISM: physical conditions are highly inhomogeneous but follow some physically-motivated distributions
m X-rays and/or PDRs complicate everything and require complex geometries

Model ingredients

m Stellar populations: need to be systematically explored and tested

m Cosmic rays, magnetic field: rely on poorly constrained prescriptions until new tracers become available
and/or new knowledge of dependency with environment

m Turbulence: exists in Cloudy for line fransfer purposes
m Shocks: high-spectral resolution is key until shocks are self-consistently integrated in photoionization codes




Extras

lllustration: MULTIGRIS (Lebouteiller Ramambason 2022)

m Use Bayes theorem to obtain
posterior probability density
functions (PDFs)

J p(0[9, M)p(0| M)

m Grid of predicted fluxes (+ m p(6|O, M) x PO[M)

interpolation function)

m Model M (‘architecture"):
components, mixing weights,

parameters 6, priors. . . ] Sompling: dlrow frqm the
m Datfa d: observed emission I|kel|h_ood with a given step
algorithm

lines / bands (incl. upper limits) N
B L=p(0|0) =[[LgN(n=
O, 02 = U,?)




Extras

2D representation of a 3D object modeled with 1D code




Extras

lllustration of ongoing works: comparison with simulafions

m (Testing phase!) Calibrating combinations of 1D models to match pr1sM simulations. Some lines are
particularly difficult to reproduce with a single component.
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Extras

Why is the probabilistic approach best

m BUT this doesn’t mean that more complex (i.e., realistic) geometries shouldn’t be explored/evaluated!

m Even if few tracers used, that doesn’t mean the real geometry is simple. It means we don’t have enough
constraints to constrain a complex geometry = Are the parameters derived from a simple architecture
meaningful? Depends on the parameter. . .|

m Forinstance, we have only 3 lines (e.g., ALMA high-z) and we wanna know the mass of HI or fegc. Is it
better fo knowingly use an unrealistic geometry and infer inaccurate (possibly precise) measurements? Or
use a realistic geometry and infer an accurate (possibly imprecise) measurement?

m My 2 cents: accept imprecision due to unknown/unconstrained geometry and in the future rely on
hierarchical methods to gain as much precision as possible



Extras

A Terminology

m Model: physical nD model (typically RT) usually adapted to given physical object within a galaxy

m Model "architecture”: pompous way to refer to a galaxy model, i.e., ways to consider galaxy components,
i.e., how do we build a galaxy, i.e., model of models
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