Hands-on session using RAMSES: MHD simulations of shocks and instabilities

Francisco Jara, Pierre Nürnberger, Jonathan Petersson, Larissa Tevlin, Jack Berat, Ihaly Garcia, Jia Wei Teh

RAMSES (Teyssier 2002)

"Raffinement Adaptatif de Maillage Sans Effort Surhumain"

- Eulerian code for solving MHD + gravity
- Sub-grid models for baryonic physics, galaxy evolution, ISM cooling, ...
- MHD equations are conservation equations:

$$
\frac{\partial \mathbf{U}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{F}(\mathbf{U})=0
$$

- Solve Riemann problem between cell interfaces:

C. Jablonowski

ramses_tsn50

RAMSES

 EXERCISES

1D implementation using RAMSES:

The Taylor-von Neumann-Sedov blastwave

- Blast wave induced by strong energy injection
- Self-similar solution-dimensions scalable!

1D implementation using RAMSES:
The Taylor-von Neumann-Sedov blastwave $P_{\text {explosion }}=10^{5} P_{\text {ambient }}$

Propagation of the blast wave as a function of time, colored by density + MF lines.
$\rightarrow y t . S l i c e P l o t(d a t, ~ p r o j e c t i o n ~=" x ", ~ f i e l d ~=~(" g a s ", ~ " d e n s i t y ")) ~(~) ~$

Only Bz

3D Representation
Colored by density, under the effect of uniform MF.

```
yt.create_scene(dat, field=("gas", "density"), lens_type="perspective")
```


Impact of different injection parameters (Collision of shock fronts)

quicker expansion /
larger momentum

Injection parameters:

$$
\begin{aligned}
\text { density } & =0.1 \\
\text { pressure } & =1 \mathrm{e} 4
\end{aligned}
$$

density $=2.0$ (amb) $\stackrel{\text { even faster expansion }}{\longleftarrow}$ density $=2.0(\mathrm{amb})$
pressure $=1 \mathrm{e} 5$
pressure $=1 \mathrm{e} 4$

Pierre Nürnberger

Molecular Cloud in a Dense Wind

Kelvin-Helmholtz Instabilities: RAMSES vs AREPO

Velocity perturbation (Springel, 2010):

$$
\begin{aligned}
v_{y}(x, y)= & w_{0} \sin (4 \pi x) \\
& \times\left\{\exp \left[-\frac{(y-0.25)^{2}}{2 \sigma^{2}}\right]+\exp \left[-\frac{(y-0.75)^{2}}{2 \sigma^{2}}\right]\right\}
\end{aligned}
$$

Gas density projection:

AREPO

(Springel, 2010)

Thank you!

