Group 3: Using Cloudy to Explore Ionization fractions and Cooling rates

Supervisor: Hsiao-Wen Chen Group members:

- Frances Buckland-Willis
- Mikhail de Villiers
- Junia Göller
- Florian Rünger
- Joanne Tan

International Summer School on the ISM of Galaxies, 25 July-2 August 2023

Outline (remove this later)

- intro to cloudy (1-2 slides)
- ionization fraction team (3 slides)
 - ionization fraction for different elements (C, O)
 - different incident spectra -- compare them (hm05, hm12, sb99)
 - grid model comparison
- cooling rates (3 slides)
 - ionization fraction * cooling coefficient = cooling rate
 - explain why hden doesn't change ionization fraction
 - temp determines the ionization frac, and the tail end of the maxwell distribution, so changing hden doesn't change
 - carbon cooling rate curve
 - oxygen cooling rate curve

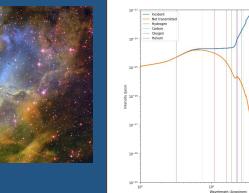
What is Cloudy?

- Cloudy is a computer programme with the ability to compute the physical conditions of diffuse gas.
- It simulates and predicts thermal, ionization and chemical structure of gaseous clouds.
- Added functionality:
 - Predict features of absorption and emission in output spectra for verification
- Extremely flexible; freedom to change and constrain parameters:
 - Redshift
 - Neutral hydrogen density
 - Metallicity
 - Geometry

Cloudy & Associates

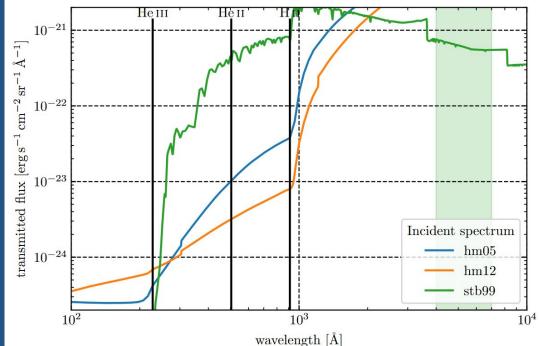
Running cloudy (How does it work?)

Starting Cloudy


Cloudy needs a few things before predicting conditions in a cloud.

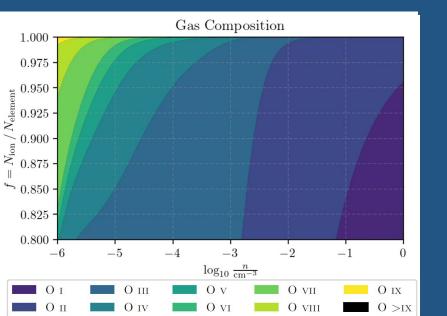
Output

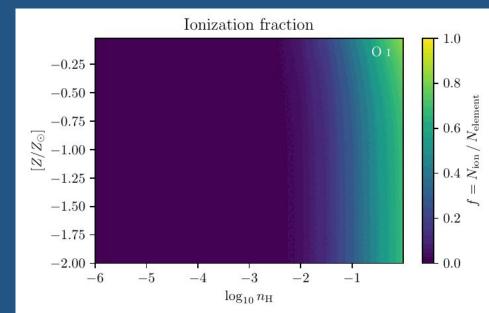
- Cloudy Model with physical conditions
- Output spectra


What is needed?

- Number density (hden)
- Abundances (metals)
- Geometry (Stop H column density)
- Commands to govern output

Influence of the incident spectrum on the ionization properties

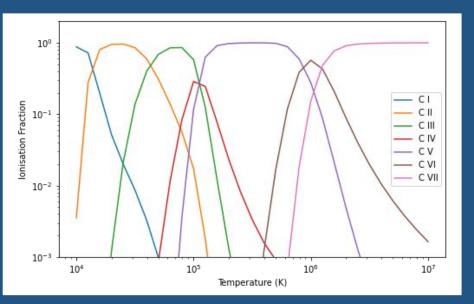

- Changing the hardness i.e. slope of the incident SED affects the continuum of the
- We ran models with different incident spectra:
 - Haardt&Madau05
 - Table for 0 < z < 9.479
 - Accounts for quasars and galaxies
 - o 🛛 Haardt&Madau (2012)
 - Table for 0 < z < 15.93
 - No QSO contribution considered here
 - Starburst99
 - Table for stellar atmospheres
- Explore the spectral regions close to the ionization edges of various species

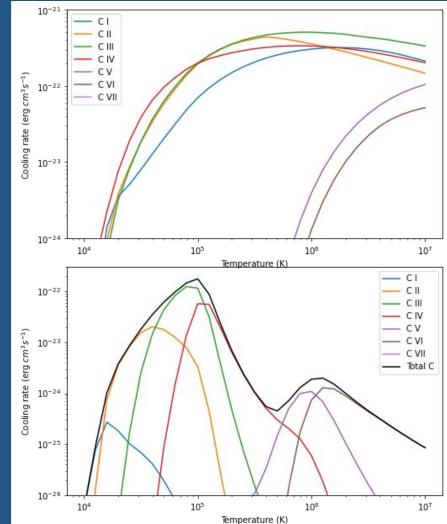


Running a Grid with Cloudy ... in order to explore the parameter space

- Ionization fraction is affected by the incident spectrum
- In the case of photoionization, the ion fraction depends on the number density
- Ionization fraction does not strongly depend on the metallicity

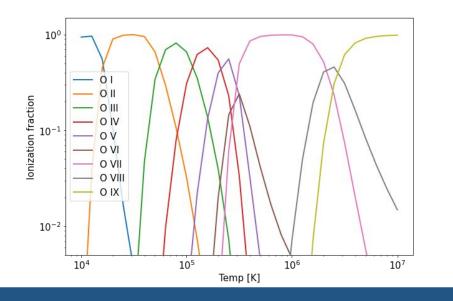
n_H N_H [Z / Z _•]

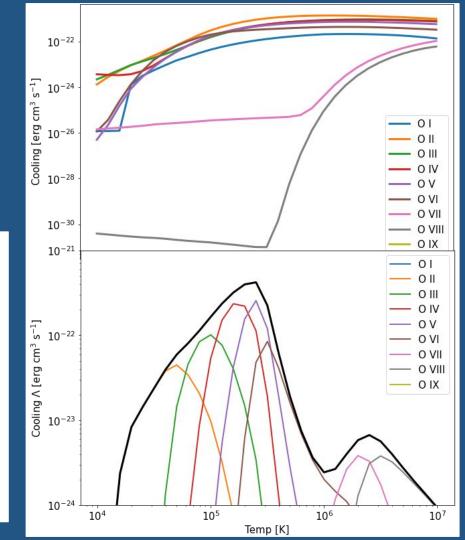


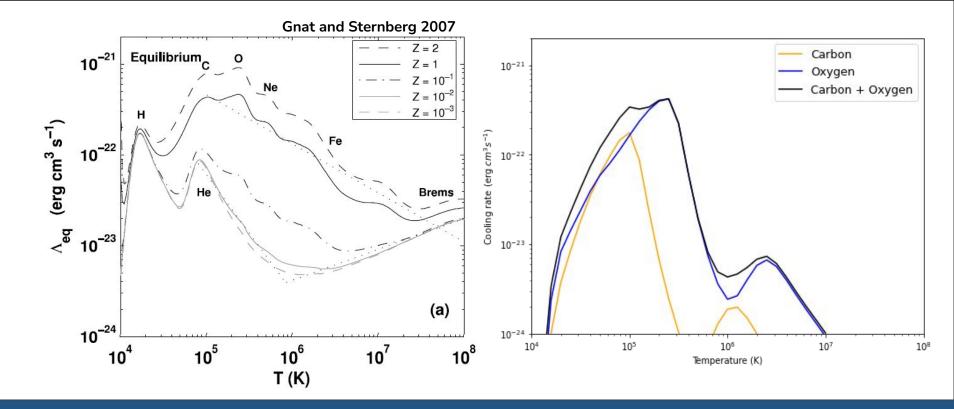

Cooling efficiency (Λ) of elements

- $\Lambda = ionization fraction * cooling rate per volume [erg cm⁻³ s⁻¹] / n²$
- Ionization fraction (from only collisions)
 - Does not depend on the number density of the gas
 - Depends on the gas temperature
- From Cloudy, we obtain
 - Ionization fractions for every ionization state for the element of interest
 - Cooling rate per volume for separate ionization state

Cooling rate: Carbon


hden = 1 cm^{-3} Metallicity = 1 (Solar) Vary temperature between 10^4 and 10^7 K




Cooling rate: Oxygen

hden = 1 cm^{-3} Metallicity = 1 (Solar) Vary temperature between 10^4 and 10^7 K

Cooling efficiency: C+O

Summary

- Cloudy is super fun and easy to use :>
- Cloudy is extremely well-documented! You can get all your questions answered just by reading Hazy1,2,3. (why not foggy, or rainy, hmm...)
 - Knowing which Hazy document is a hurdle to overcome (ctrl+f is your best friend)
- We've managed to:
 - Figure out how different incident spectra used for Cloudy will influence the ionization properties of the predicted output.
 - Replicate theeaks of the (peaks of the) cooling efficiency curve for carbon and oxygen.
- You can do more with Cloudy!